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ABSTRACT
This paper presents a framework for improving enterprise email
filtering systems using a powerful language and communication
network-based model. Emails are represented as bipartite graphs
made up of user nodes and message nodes. Embeddings for user
nodes are taken from a hierarchically structured communication
network that links users to domains and top-domains. Email graphs
are embedded and classified as malicious or benign using a hetero-
geneous Graph Neural Network. Training this model with a label
noise-tolerant loss function allows training labels to be taken from
an imperfect existing filtering system, which can afford a large
volume of data without the expensive requirement of clean labels.

CCS CONCEPTS
•Computingmethodologies→Machine learning approaches;
• Security and privacy→ Phishing.
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1 INTRODUCTION
Enterprise email networks provide a broad setting in which a com-
pany’s security may be threatened. Through email, malicious enti-
ties conduct social engineering attacks — referred to as “phishing” —
to compromise data and inject malware [18]. Email threats are sub-
tle, dangerous, and have a widespread impact; in a survey spanning
seven countries, 86% of organizations reportedly experienced bulk
phishing in 2021. Of those respondents, 83% reported successful
attacks perpetrated against them [18].

Companies defend themselves from phishing attacks with email
filtering systems: scanners that filter out unwanted emails using a
combination of content-based rules, blacklists, whitelists, malware
detection, and threat intelligence [4, 18]. Machine learning (ML)
also provides an adaptable tool set for combating the ever-evolving
landscape of email threats [4, 8]. Recent advances in the ML fields
of Natural Language Processing (NLP) and Graph Neural Networks
(GNNs) continue to strengthen email defenses.

Efforts to apply ML to email filtering are often hindered by the
requirement of a large body of reliably labeled data [23]. Enterprises
with existing filtering systems may turn to their own archives and
derive labels from records of which emails were filtered. However,
this means that in the optimal case of a model learning the targets
perfectly, it will still miss all the same attacks that the existing
system does. Such a case of unreliable ground-truth is an example
of the broader issue in ML of label noise [7, 21].
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While many ML applications for email filtering are focused on
text features, another useful feature set lies with the social inter-
actions in an email network [1]. Examining one user’s relation to
another adds context to the text of an exchange and can inform
filtering decisions. Even more information can be gained by con-
sidering the relation between one user and the domain name or
top-domain of another.

This paper presents a modeling procedure for improving email
filtering systems through two main contributions. The first contri-
bution is the use of a holistic email representation that combines
text embeddings with hierarchically structured domain and user
embeddings from an email communication network. This repre-
sentation affords stronger performance than its component parts.
The second contribution is the application of label noise mitigation
techniques for deep neural networks (DNNs) to the email filtering
setting. With noise-tolerant loss functions, a model can achieve su-
perior performance to the existing system from which its imperfect
training labels are taken.

2 RELATEDWORK
2.0.1 ML and Emails. Applying ML to email filtering has been in
practice for many years and is surveyed in [4, 8]. One of the earliest
applications is [19], in which emails are prepared in a sparse bag-of-
words representation and classified with the Naive-Bayes algorithm.
In [30], the adaptability of TF-IDF vectorization and Naive-Bayes
to label-flipping attacks on training data is studied.

The Naive-Bayes classifier is compared to a Multi-Layer Per-
ceptron (MLP) neural network for spam filtering in [22]. In [14], a
DistilBERT [20] model is fine-tuned with content (text-based) and
context (email header-based) features to determine the malicious-
ness of emails.

Statistical social network features and language embeddings are
used in [1] to attribute nodes in a bipartite graph of emails and
a GNN is used to classify emails as work-related or personal. A
Semantic GNN is adopted in [16] to learn linguistic features of
malicious emails and improve filtering performance.

2.0.2 Label Noise. The problem of supervised learning in the pres-
ence of label noise is also a topic of much discussion in ML research
[6, 7, 23, 31]. Label noise occurs when the targets used for training
have been corrupted from the ground-truth [23]. The corrupted
label set is referred to as the “silver” labels and the ground-truth
labels are referred to as “golden” labels.

It has been shown that models trained on silver labels generalize
poorly in testing [7, 13, 23, 31]. Experimental evaluations in [3, 21,
30] demonstrate that classical ML-based email filtering techniques
underperform when trained on unreliable targets. Both [3] and [21]
specifically observe that filtering models trained on labels sourced
from imperfect third parties incur serious performance degradation
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due to over-fitting. This paper extends these observations to DNN-
based email filtering techniques.

Performance degradation caused by over-fitting to noisy labels is
a particular problem for DNNs, as shown in [2, 28, 29]. Robustness
to this degradation is examined in [9] and conditions for noise-
tolerant loss functions for DNNs are proposed. The work on noise-
tolerance is extended in [15] by introducing a general set of robust
loss functions that can address uniform noise. Other loss functions
for addressing label noise are proposed in [5, 10, 17, 24, 27, 31].

A limitation of [1] is that emails are classified within the context
of a full graph. This is incompatible with the email filtering setting,
in which emails must be classified quickly and individually as they
arrive. A limitation of [3, 21, 30] is that robustness to label noise is
not addressed in the context of deep learning. This paper addresses
the limitations of both works by generalizing offline node classifi-
cation to online subgraph classification for email filtering and by
training against a noise-tolerant objective.

3 THEORETICAL APPROACH
3.1 Email Graph Attribution
Emails take the form of attributed graphs of the interaction be-
tween two or more user-entities and the text of the exchange [1].
Transforming this data structure into a numeric representation is
challenging because the set of natural language and user-entities
must be encoded into the same vector space. The following sections
describe a graph-based approach for representing email text and
user interactions holistically.

3.1.1 Email-Based Communication Networks. The full set of email
communications between unique users in a dataset is captured in a
user-message network1 [1]. The bipartite user-message network B =

(𝑈 ,𝑀, 𝐸) consists of two sets of nodes: users and messages. User
nodes represent user-entities (e.g., individual people, notification
generators, help desks, and front offices). Message nodes represent
the text of an email communication between two user-entities.
Edges between the two sets of nodes indicate which users are
sending or receiving which messages. A hypothetical user-message
network is shown in figure 1.a.

The user-message network is constructed from subgraphs derived
from individual email correspondences. Each user-message subgraph
B𝑠 ⊂ B consists of a user node representing the sender of the email,
a message node representing the text (subject and body), and at
least one user node representing the recipient(s) (addresses in the
“to”, “cc”, and “bcc” header fields). Directed edges from the sender to
the message and from the message to each recipient specify the role
of each user in the exchange. In the example network of figure 1.a,
the subgraph B𝑠 = ({𝑈1,𝑈2}, {𝑀1}, 𝐸𝑠 ) represents a single email
correspondence from𝑈1 to𝑈2.

The user network G𝑈 = (𝑈 , 𝐸) is a projection of the user-message
network to a graph consisting only of user nodes [1]. A single
edge exists between users 𝑈𝑖 and 𝑈 𝑗 in this network if a path
(𝑈𝑖 , 𝑀𝑘 ,𝑈 𝑗 ) exists in the user-message network. Edges are weighted
by the number of these paths that exist — i.e., the number of times
user𝑈𝑖 has emailed user𝑈 𝑗 .

1This is referred to in [1] as the “bipartite email-user network”.

The user network can be extended by noting an interesting prop-
erty of email addresses.When determining the validity of the sender
of a suspicious email, it is intuitive to consider individual compo-
nents of an email address instead of simply the unique entity. If
the full email address of the sender is unfamiliar to the recipient, a
logical next step would be to consider the familiarity of the domain
name in the address. Going a step further, if the domain name is
unfamiliar, one might examine the top-domain.

Email addresses have a hierarchical structure consisting of full
addresses at the bottom, domain names in the middle, and top-
domains at the top. Full addresses correspond to the user nodes in
the user-message network, denoted 𝑈 . Domain names make up the
set of nodes denoted 𝐷 , where 𝐷 ⊃ 𝑈 . Top-domains make up the
set of nodes denoted 𝑇 , where 𝑇 ⊃ 𝐷 ⊃ 𝑈 .

This hierarchical property motivates the augmentation of the
user network to the extended user network G = (𝑈 , 𝐷,𝑇 , 𝐸). This
extended network consists of the three node sets and nine connected
edge blocks. Each block is made up of the (weighted) connections
from one node set to another. Naturally, the block of connections
from user nodes to user nodes, denoted G𝑈𝑈 , is simply the original
user network G𝑈 .

The block of connections within the domain node subset, de-
noted G𝐷𝐷 , represents the aggregation of email communications
between domain names. Here, an edge exists between domains
𝐷𝑖′ and 𝐷 𝑗 ′ if there is an edge between any child nodes 𝑈𝑖 ∈ 𝐷𝑖′

and 𝑈 𝑗 ∈ 𝐷 𝑗 ′ . The block of connections within the top-domain
node subset, denoted G𝑇𝑇 , represents the aggregation of commu-
nications between top-domain nodes. Here, edges exist between
top-domains𝑇𝑖′′ and𝑇𝑗 ′′ if there is an edge between any grandchild
nodes𝑈𝑖 ∈ 𝐷𝑖′ ∈ 𝑇𝑖′′ and𝑈 𝑗 ∈ 𝐷 𝑗 ′ ∈ 𝑇𝑗 ′′ . The remaining six blocks
represent aggregations between distinct node subsets. Discussion
of the extended user network is continued in appendix C.

3.1.2 Message Features. Following [1], different types of features
are extracted for different types of nodes in the user-message net-
work: text features for message nodes and network features for user
nodes.

Extending the use of text embeddings in [1], this paper uses a pre-
trained MiniLM2 sentence transformer based on [26]. The model
is fine-tuned on an email corpus following the Transformer-based
Sequential Denoising Auto-Encoder (TSDAE) procedure from [25].
The resulting message embedding model is referred to as MsgAttr
(equation 1).

MsgAttr : 𝑀𝑖 ↦→ R384 (1)
Documents in the email corpus consist of subject lines and mes-

sage bodies extracted from emails. The documents are parsed to
remove non-informative punctuation, UTF codes, and strings of
more than 15 characters (this filters out noisy alphanumeric strings
appended to many email bodies). URLs, IP address, domain names,
and timestamps are all replaced with identifying tokens. All alpha-
betic characters are standardized to lowercase.

3.1.3 User Features. The extended user network offers a rich source
of social network information to be used for user node features.
One particularly useful set of information that can be extracted is
node embeddings. The GraphSAGE algorithm [11] is used to extract

2MiniLM: https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2.
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Figure 1: Email-based communication network representations

𝑎.) A bipartite user-message network comprised of five users and five messages. 𝑏.) The homogeneous user network projection of the graph in
𝑎. 𝑐.) The extended user network incorporating the set of domains and top-domains. (Source: author’s calculations.)

embeddings from the extended user network to attribute user nodes
in the user-message network.

GraphSAGE generates an embedding for a given node by updat-
ing the node’s own latent feature vector with an aggregation of its
neighbors’ features. The authors of [11] show that using the max-
pooling neighborhood aggregation function allows for structural
learning on nodes initialized with arbitrary features. Accordingly,
this paper initializes feature vectors for each node with random
draws from a normal distribution. The full embedding model is
made up of multiple GraphSAGE layers stacked together and is
trained with the link prediction objective.

UsingGraphSAGE this way, arbitrary features given to each node
in the extended user network can be mapped to information-rich
embeddings for downstream modeling. Embeddings are extracted
for all nodes 𝑈 ∪ 𝐷 ∪ 𝑇 , meaning that a given user-entity in the
user-message network will have three associated feature vectors:
one for their full username, one for their domain name, and one for
their top-domain. The full function for user embeddings is given by

UsrAttr(𝑈𝑖 ) =
|𝑈 | ℎ(𝑈𝑖 ) + |𝐷 | ℎ(𝐷𝑖′ ) + |𝑇 | ℎ(𝑇𝑖′′ )

|𝑈 | + |𝐷 | + |𝑇 | (2)

where ℎ is the function for extracting vectors from the extended
user network using the full GraphSAGE embedding model.

Taking a weighted average of these three vectors yields better
performance in downstream modeling than any individual vector
alone. This is likely due to the size and sparsity of the user network.
Enterprise email networks contain many users, including inter-
nal users who never communicate with one another and external
users who only appear once or twice. Incorporating the domain
and top-domain blocks of G in analysis — effectively examining
relationships between domains and top-domains instead of just
between users — affords much more informative features than the
sparse user block alone.

In summary, the user-message network B is made up of individual
email communications represented as user-message subgraphs B𝑠 .
Each user-message subgraph consists of user nodes and message
nodes. The MsgAttr function (equation 1) is used to attribute mes-
sage nodes in {B𝑠 } and the UsrAttr function (equation 2) is used to
attribute user nodes. It should be noted that this paper differs from

the approach of [1] in that the GraphSAGE embedding task is sep-
arated from the classification task. Doing so changes the modeling
process from one of node classification in a full user-message graph
to one of graph classification in a set of user-message subgraphs.

3.2 Modeling Under Label Noise
3.2.1 Architecture. The email filtering model discussed here is
made up of a GNN encoder module, which creates vector embed-
dings of user-message subgraphs, followed by anMLPmodule, which
estimates probabilities of each input being malicious or benign.

The graph encoder module has the job of transforming the set
of input graphs {B𝑠 } into latent vector representations 𝑋 . This
paper uses the bipartite extension of graph convolution [12] from
[1] to accommodate heterogeneous graphs, where different weight
matrices encode the features of different node types.

Next, a pooling layer is used to flatten the encoded subgraphs
into dense vectors to be used by downstream layers. This is done
by concatenating the latent vector of the message node with the
average feature vector of the user nodes in the subgraph. This em-
bedding is then passed through a series of dense layers to estimate
the probability distribution 𝑝 of the label 𝑦 given the input 𝑥 .

CE(𝑝,𝑦) = −∑𝑘
𝑖=1𝑞𝑖 ln (𝑝𝑖 ) (3)

The model is trained using cross-entropy loss as given in equation 3,
where 𝑘 is the number of classes in the label set (two in the case of
email filtering) and 𝑞 is a one-hot encoded vector such that 𝑞𝑦 = 1.

3.2.2 Label Noise Robustness. The assumption of label noise is used
to address the effects of sourcing training labels from an existing
email filtering system. The risk that a trained model makes the
same mistakes as the existing system is mitigated by adopting a
label noise-tolerant loss function.

It is shown in [9] that label noise can be addressed under certain
conditions. One main requirement is that the loss function L used
in training is symmetric, satisfying

∑𝑘
𝑖=1 L (𝑓 (𝑥), 𝑖) = 𝐶 for all

samples 𝑥 ∈ 𝑋 and for any model 𝑓 , where 𝐶 is a constant.
This condition is met for most classification loss functions with

the incorporation of a normalizing term [15]. A set of normalized
loss functions is proposed in [15] under a loss framework called
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Active-Passive Loss (APL). Normalized loss functions take the form
L̄ =

L(𝑓 (𝑥 ),𝑦)∑𝑘
𝑖=1 L(𝑓 (𝑥 ),𝑖 )

and are bounded between 0 and 1. The authors

suggest combining two such functions: one that behaves “actively”
— only maximizing the predicted probability of the target class
— and one that behaves “passively” — also minimizing predicted
probabilities of the off-target classes.

APL = 𝛼 NCE(𝑝,𝑦) + 𝛽MAE(𝑝,𝑦) (4)

NCE =

∑𝑘
𝑖=1 𝑞𝑖 ln (𝑝𝑖 )∑𝑘

𝑖=1
∑𝑘

𝑗=1 𝑞𝑖 ln (𝑝 𝑗 )
(5)

MAE =
∑𝑘
𝑖=1 |𝑞𝑖 − 𝑦𝑖 | (6)

Effective learning under label noise is demonstrated in [15] by
combining normalized cross-entropy (equation 5) for the active
portion andmean absolute error (equation 6) for the passive portion.
The combined loss function is shown in equation 4, where 𝛼 and 𝛽

are hyper-parameters controlling the mixture strength of the active
and passive components.

4 EXPERIMENTS
4.1 Data
To test the effectiveness of this email filtering approach, a dataset
that fulfills certain requirements is needed. First, because the feature
extraction process in section 3.1 relies heavily on social network
characteristics, the email corpus used for training and testing must
exhibit some social network structure. The dataset must also come
with reliable ground-truth to allow for the simulation of label noise.

This paper uses the combined TREC-06, TREC-07, and TREC-08
corpora from the Text REtrieval Conference3. Many emails across
the three corpora are centered around users from the University of
Waterloo (where the dataset is maintained) or users from a related
educational institution. A portion of the data also overlaps with the
Enron4 dataset. Note that these corpora are used in [3, 16, 21, 22, 30].

Prior to experimentation, a number of emails are heuristically
removed: duplicate emails and emails for which the sender or re-
cipient(s) is undisclosed, has been redacted, or is otherwise invalid
(e.g., has no domain name). The dataset is down-sampled such that
malicious emails make up only 25% of the total corpus.

The processed dataset is made up of 95,376 emails. For testing,
1,000 malicious and 1,000 benign emails are held out. There are
93,376 emails used for training, 23,344 of which are malicious and
70, 032 of which are benign. The training emails are used to build
the extended user network (summary statistics in appendix B).

4.2 Results
4.2.1 Node Embeddings. To begin discussion of the results, con-
sider first the embeddings from UsrAttr. Figure 2 shows a 2D projec-
tion of two embedding techniques. Panel 2.a visualizes embeddings
generated by a traditional GraphSAGE model trained on the user
network of the TREC corpus. This approach does not fully capture
information on domain and top-domain interactions; consequently,
there are only two or three well defined communities and many out-
lying nodes. Panel 2.b visualizes embeddings generated by UsrAttr

3TREC Spam Track: https://trec.nist.gov/data/spam.html.
4Enron Email Dataset: https://www.cs.cmu.edu/~enron/.

trained on the extended user network. These embeddings reveal a
clear community structure with several dense clusters.

Figure 2: User embeddings comparision

𝑎.) Embeddings generated with standard GraphSAGE trained on the user network. 𝑏.) Embeddings
generated with UsrAttr trained on the extended user network. (Source: author’s calculations.)

Having more clusters is preferable in this context because it
implies a richer feature space. Clusters in the node embeddings
imply community structure in the network. Embeddings that fail
to encode the clusters also fail to capture the community structure.
Using these embeddings for downstream modeling also improves
classification results.

4.2.2 Feature Sets. To demonstrate the effectiveness of combining
node and text embeddings in a GNN, classification experiments are
run using four different feature sets. The first model is trained only
on user node embeddings from the user network extracted with
standard GraphSAGE (figure 2.a). The second model is trained only
on user node embeddings from the extended user network extracted
with UsrAttr (equation 2, figure 2.b). The third model is trained
only on message embeddings extracted with MsgAttr (equation 1).
The fourth model uses the architecture outlined in section 3.2.1 and
is trained on combined embeddings from UsrAttr and MsgAttr.

Table 1: Modeling results on different feature sets
Features Recall Precision F1 Accuracy
GraphSAGE 0.936 ± 0.012 0.938 ± 0.001 0.937 ± 0.006 0.937 ± 0.005
UsrAttr 0.952 ± 0.008 0.956 ± 0.004 0.954 ± 0.004 0.954 ± 0.003
MsgAttr 0.968 ± 0.005 0.984 ± 0.005 0.976 ± 0.002 0.976 ± 0.002
Combined 0.980 ± 0.002 0.985 ± 0.003 0.982 ± 0.001 0.982 ± 0.001
"Combined" refers to combined UsrAttr and MsgAttr features in the GNN architecture
from section 3.2.1. (Source: author’s calculations.)

Each model uses the same MLP architecture, the same hyper-
parameter configuration, and is trained on cross-entropy loss. Re-
sults against the holdout set are aggregated over five runs and
shown in table 1. The user node embedding approach described in
this paper achieves superior performance to standard GraphSAGE
in downstream modeling. The transformer-based message embed-
dings are also very effective on their own. Performance is further
improved by combining the message and user embeddings in a
GNN, achieving 98% testing accuracy.

Although the datasets are not perfectly comparable (after the
pre-processing described in section 4.1), these results are an im-
provement upon those in [16, 22, 30]. Using a Semantic GNN on
email messages, [16] achieves 96.6% testing accuracy. Using a MLP

https://trec.nist.gov/data/spam.html
https://www.cs.cmu.edu/~enron/
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on vectorized text, [22] achieves 93% accuracy. Using the Naive-
Bayes algorithm on TF-IDF vectors with clean labels, [30] achieves
89.9% accuracy.

4.2.3 Noise Robustness. As a simple stand-in for an existing rule-
based email filtering system for the TREC data, this paper fits a
decision tree to the TF-IDF vectors extracted from each email’s sub-
ject line and body. The predictions from this “filterer” are used as the
silver label set for training a new model. The filterer’s predictions
match the golden training labels with 90.9% accuracy, implying a
roughly 10% level of label noise. The performance of the filterer on
the the holdout data is shown in the first row of table 2.

Table 2: Modeling results under label noise
Loss Recall Precision F1 Accuracy

0.771 0.849 0.808 0.863
CE 0.86 ± 0.027 0.916 ± 0.009 0.887 ± 0.014 0.89 ± 0.012
APL 0.906 ± 0.026 0.931 ± 0.009 0.918 ± 0.011 0.919 ± 0.009
NB 0.802 ± 0.0 0.956 ± 0.0 0.872 ± 0.0 0.883 ± 0.0
First row: comparison of filterer (silver labels) against held-out golden labels. Second
row: performance of GNN trained with cross-entropy loss. Third row: performance
of GNN trained with active-passive loss. Fourth row: performance of Naive-Bayes
algorithm. (Source: author’s calculations.)

Using the same architecture and training procedure as the com-
bined model in table 1 affords markedly lower performance on the
golden holdout set when trained on the silver labels. Surprisingly
the model still outperforms the filterer using non-robust cross-
entropy loss. This is likely due to the richness of the features used.
When trained using active-passive loss instead, the model recovers
an impressive amount of accuracy and recall.

The failure of the robust model to achieve more than 92% ac-
curacy could be due to the type of label noise present. Using the
filterer’s predictions as silver labels in training introduces feature-
dependent label noise [7, 21] to the modeling process. It is possible
that such noise is too complicated to be addressed by symmetric
loss functions alone.

In a set of experiments on the TREC-07 dataset, [30] fits theNaive-
Bayes algorithm under varying label noise levels. In the presence
of 10% noise, their approach achieves 78.1 − 88.8% accuracy. When
applied to this paper’s dataset, the same algorithm achieves 88.3%
accuracy.

5 CONCLUSION
This paper demonstrates the usefulness of the extended user net-
work in email filtering. Incorporating text features from MsgAttr
and network features from UsrAttr in a graph classification task
achieves strong performance in email filtering. Label noise is ef-
fectively addressed by training with a noise-tolerant loss function.
Taken together, these two components yield a framework for im-
proving enterprise email filtering without the need for expensive
ground-truth labels.
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A IMPLEMENTATION
The UsrAttr model uses hidden layers of size 40, 70, and 100. The
model is trained for 30 epochs with an initial learning rate of 0.01
and an exponential decay rate of 0.97. The weight decay strength
used is 0.0001. For link prediction, 10 negative edges are sampled
for every positive edge.

The TSDAE fine-tuning procedure for the UsrAttr model is per-
formed for 1,000 steps with batches of size 64 and a constant learn-
ing rate of 0.00005.

For the classification models in section 4.2.2 that use user em-
beddings alone, an aggregation function must be used to create
a single vector that incorporates (directed) information about an
email’s sender and recipients. This paper uses

𝑥 =
𝑥𝑢

∥𝑥𝑢 ∥2
+ 1

|𝑣 |
∑
𝑖∈𝑣

𝑥𝑖
∥𝑥𝑢 ∥2

where 𝑢 is the sender of the email, 𝑣 is the set of recipients of the
email, and 𝑥𝑖 is the embedding of the 𝑖𝑡ℎ user node.

The MLP architecture shared by all classifiers uses hidden lay-
ers of size 240 and 120 each with batch normalization and ReLU
activation functions. The output is of dimension 2 and uses a Soft-
max activation function. The models are trained for 30 epochs with
Adam optimization using weight decay strength of 0.00005. The
initial learning rate is 0.005 and the exponential decay rate is 0.95.
To address imbalance in the labels, negative and positive samples
are re-weighted 1 : 3.5 in the loss function.

For the noise-tolerant training in section 4.2.3, APL (equation
4) is used with 𝛼 = 0.5 and 𝛽 = 0.25. The Naive-Bayes algorithm
reproduced from [30] is applied to TF-IDF vectorized (2, 3)-grams
and is tuned using grid-search hyper-parameter optimization with
a Multinomial prior.

B NETWORK STATISTICS
Table 3 shows network statistics derived from the extended user
network built from the TREC corpus (section 4.1). The first row of
the table shows statistics for the full graph G, the second row shows
statistics for just the user block G𝑈 , the third row shows statistics
for the domain block G𝐷 , and the fourth row shows statistics for
the top-domain block G𝑇 . Note that the third column shows the
number of connected components. The final column measures total
degree, weighted by the function 𝜔 (section 3.1.1).

Table 3: Extended user network statistics
Nodes Edges Conn.

Comp. In-Degree Out-Degree 𝜔 Degree

count count count mean median mean median mean median

G 54,853 241,737 3 4.4 0 4.4 3 11.3 1
G𝑈 37,060 54,583 1,606 1.5 0 1.5 1 5.6 1
G𝐷 17,588 27,205 347 1.6 0 1.6 1 11.8 1
G𝑇 205 1,108 3 4.9 0 4.9 2 101.6 3
(Source: author’s calculations.)

C FULL ADJACENCY MATRIX
The adjacency matrix 𝐴 of the extended user network is made up
of nine blocks. Each block is itself an adjacency matrix between
two node sets. For example, the (weighted) adjacency matrix of the
user-user block is denoted 𝐴𝑈𝑈 and its elements are (𝐴𝑈𝑈 )𝑖 𝑗 =

𝜔 (𝑈𝑖 ,𝑈 𝑗 ), where 𝜔 counts the number of emails sent between two
nodes or their children. The full matrix is written as

𝐴 =

(
𝐴𝑈𝑈 𝐴𝑈𝐷 𝐴𝑈𝑇
𝐴𝐷𝑈 𝐴𝐷𝐷 𝐴𝐷𝑇
𝐴𝑇𝑈 𝐴𝑇𝐷 𝐴𝑇𝑇

)
The hierarchical relationship between the three node sets implies
that each of the nine blocks has the same total weighted degree,
equal to 𝑑 . That is,

∑
𝑖

∑
𝑗 (𝐴𝑈𝑈 )𝑖 𝑗 =

∑
𝑖

∑
𝑗 (𝐴𝑈𝐷 )𝑖 𝑗 = ... = 𝑑

for all permutations of {𝑈 , 𝐷,𝑇 }, and thus
∑
𝑖

∑
𝑗 𝐴𝑖 𝑗 = 9𝑑 . It is

also noteworthy that 𝜔 (𝑈𝑖 , 𝐷 𝑗 ′ ) =
∑
𝑈 𝑗 ∈𝐷 𝑗 ′ 𝜔 (𝑈𝑖 ,𝑈 𝑗 ) and that

𝜔 (𝐷𝑖′ , 𝐷 𝑗 ′ ) =
∑
𝑈𝑖 ∈𝐷𝑖′

∑
𝑈 𝑗 ∈𝐷 𝑗 ′ 𝜔 (𝑈𝑖 ,𝑈 𝑗 ) and so on.
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