
A Transformer-based User Behavior Representation for Peer 

Grouping in Threat Detection 

 

Xiao Lin 
 SMLS Group 

 Splunk Inc. 

 San Jose, CA, USA 

 xlin@splunk.com 

Glory Avina 
 SMLS Group 

 Splunk Inc. 

 San Francisco, CA, USA 

 gloryavina@splunk.com  

Stanislav Miskovic† 

 Gluware Inc. 

 San Jose, CA, USA 

 stanislav.miskovic@gmail.com 

 

 

ABSTRACT 

When detecting anomalies from sequence data, a machine 

learning model usually infers from historical data of an entity 

(user account or device), but ignores other peer entities’ behavior, 

which results in false positives. Therefore, peer grouping 

(clustering) is often applied first and then entities are clustered 

into groups. This ordering allows for detection algorithms that are 

effective for specific peer groups to be adopted. However, 

performance of peer grouping is dependent on feature 

representation, which is dynamic for sequence data. This makes it 

challenging to construct good representation learning. In this 

study, we experiment with a method to train representation using 

transformer-based encoder-decoder architecture. In this 

architecture, we adopt sparse probability self-attention to 

effectively overcome transformers’ limitations of large memory 

and a long run time. A self-attention distilling mechanism is also 

applied to accommodate long sequence modeling capability. 

Experimental results show that this proposed method is effective 

and applicable to solve real world problems. The trained 

representation is used in a downstream dynamic peer grouping 

task and compared against a Dynamic Time Warping (DTW) 

baseline. Results show that using representation learned from our 

system can significantly improve peer grouping performance. 
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1 Introduction 

Besides matching the known bad behavior patterns, the successful 

detection of security threats is often manifested as a comparison 

between normal and anomalous behavior. Early and accurate 

detection of threats in real-time streaming data is imperative for 

most industries. Though rule intelligence-based anomaly detection 

is effective, especially for long tail problems, a machine learning 

based approach is attracting increased attention for its ability to 

detect novel anomaly and resilience to data variation (Pang, Shen, 

Cao and Hengel, 2021; Dietterich, 2002; Laptev, Amizadeh and 

Flint, 2015; Zhang et al., 2019; Audibert, 2020; Samtani et al., 

2022). When detecting anomalies from sequence data, a machine 

learning model usually infers from historical data of an entity 

(user account or device), but ignores other peer entities’ behavior, 

which can increase the false positive rate (Yin et al., 2020). 

Therefore, peer grouping (clustering) is often needed to supply the 

context for determining outliers. Furthermore, for internet and 

enterprise applications, cardinality of entities is generally too 

large, which prevents training/deploying a machine learning 

model for each single entity. Therefore, it is desirable to cluster 

entities into separate groups so that the entities in each group have 

similar behavior and then apply a suitable model to this group (Li, 

Zhao, Liu and Pei, 2018, Matterer and LeJeune, 2018). 

     To form groups for entities, a feature representation is needed 

for each entity. This allows an evaluation by similarity or 

distance. This feature representation can be derived from 

information about a company’s hierarchy, organizational unit, or 
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active directory data. However, such representation suffers from 

two limitations: (1) it is static and not able to reflect temporal 

changes, or might not even be available, e.g., external attacker’s 

account and device (Oladimeji, Ayo1 and Adewumi, 2019); (2) 

entities with same group identity might behave differently. For 

example, a user in group GA might work in project of GB. When a 

behavior model for GA is applied on this user, many of his GB 

related activities will inevitably be flagged as false positives. A 

user behavior representation should be built from dynamic history 

data instead of users’ static attributes. However, it is still an open 

challenge to construct representation that can effectively stand for 

temporal dynamics of time series, especially the one proper for 

subsequent clustering tasks (Ma et al. 2019). 

 

 

 

Figure 1: System Diagram of Representation Learning and 

Downstream Peer Grouping 

     In order to provide accurate representation, we experiment 

with a transformer-based user behavior representation for peer 

grouping from massive entity’s historical behavior data that is 

readily available on Splunk’s data platform. As shown in Figure 1, 

we have a streaming anomaly detection flow for security 

intelligence. Log events from data source (OS, app, or device) are 

ingested into the flow for feature extraction then piped to online 

detection flow, which includes time warping, peer grouping and 

anomaly assessment three modules. Our goal is to experiment 

with an encoder learned from offline representation learning on 

user history records, as an alternative to a time warping module. 

In this study, we construct the encoder using transformer architect 

and then represent it through a sequence prediction task. We 

successfully applied a transformer-based representation on 

security threat detection data. The flow trains one encoder model 

from multiple users’ behavior history that can be used in 

downstream peer grouping tasks. Our end-to-end experiment 

shows the feasibility and effectiveness of such a system with 

potential application in streaming security data analytics.  

2 Related Work 

Success of many machine learning models largely depends on the 

quality of representation of input data (Bengio, Courville and 

Vincent, 2013, Pang, Cao, Chen, and Liu, 2018). Under the 

umbrella of self-supervised learning, various network 

architectures have been used to construct an encoder for time 

series representation (Li et al., 2015). Franceschi, Dieuleveut and 

Jaggi (2019) used causal dilated convolutions as their encoder-

only-system to achieve scalable representation learning for 

variable length multivariate time series. Such architecture allows 

efficient parallelization on modern hardware like GPUs. They also 

first introduced triplet loss into time series unsupervised training 

through time-based negative sampling to enhance similarity of 

representation for similar time series. Because of Recurrent 

Neural Network (RNN)’s capability to model sequence data, it 

naturally gains attention in time series representation learning as 

well. Dezfouli et al. (2019) proposed a RNN based end-to-end 

learning framework to train low-dimensional representation from 

human decision-making behavior data. Extra terms are introduced 

in the loss function so that latent dimensions are informative and 

disentangled, i.e., encouraged to have distinct effects on behavior. 

In activity2vec, adversarial network is added to increase the 

performance and generalization of representation matrix for 

human body activity signals over a time segment (Aggarwal et al., 

2019). Variational autoencoder (VAE) method also finds wide 

application in time series representation learning (Fabius and 

Amersfoort, 2015). In GP-VAE (Fortuin, Baranchuk, Rätsch and 

Mandt, 2020; Fortuin et al., 2019) VAE is used to model the low 

dimensional dynamics with a Gaussian process. The 

representation is used to map missing time series data for 

imputation. Pereira and Silveira (2019) also applied VAE trained 

with a Bi-LSTM decoder on electrocardiograms (ECG) sequence 

to learn representation which was used in downstream anomaly 

detection. Their results show that when using representation even 

an unsupervised algorithm can reach the accuracy level of 

supervised algorithm-based detection without using a latent 

representation.  

     Transformer self-attention was first proposed and used in NLP 

neural machine translation. Its impressive performance quickly 

made it one of the most popular language models and widely 

adopted across the NLP area. It also gained success in computer 

vision, and it became adopted in the time series area. Zerveas et 

al. (2020) for the first time applied a transformer to do 

representation learning on time series. They showed superior 

performance on several data sets against non-transformer 

approaches. This model is relatively small (at most hundreds of 

thousands of parameters), so performance was not an issue. 

Although attention mechanism is efficient to solve long 

dependency and computation parallelism, it has a well-known 

limitation that attention calculation has quadratic time complexity 

𝒪(𝑙2) and space complexity 𝒪(𝐽 ⋅ 𝑙2) . Many researchers have 

attacked this hurdle to lower the resource requirement of attention 

mechanism (Tay, Dehghani, Bahri and Metzler, 2020, Zhou et al., 

2021). 

     Ma et al. (2019)’s work is like ours in the aspect that both 

projects target unsupervised techniques to build a representation 

encoder for applying clustering. Our approach differs from Ma’s 

in two significant ways: (1) a transformer is core architecture in 

our encoder, while Ma’s uses dilated RNN seq2seq model; (2) in 

Ma’s system, representation learning and clustering are integrated 

into one flow, while in our system, they are two independent 

modules. The reason is that in our application, peer grouping 

model needs to be learned online from streaming data to facilitate 
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rapid response of security threat detection. Because representation 

learning is an independent module, the trained representation 

model can be adopted in other downstream machine learning 

tasks. 

     In our experiment, we used transformers to build encoders to 

take advantage of self-attention’s power of modeling sequence 

dependency. The sparse query matrix approach proposed by Zhou 

et al. (2021) is applied to overcome the limitation of self-attention 

run time and memory requirement.  

3 Method 

3.1 Problem statement  

Given a data stream emitting events E(e, T, x), which reads that 

event E belongs to entity e, happens at moment t, and is featured 

by a vector x: [xm], where 𝑚 ∈ 𝑀 is dimension of feature vector, 

historical behavior data can be collected to form dataset 𝑫: =

{𝐸𝑡(𝑒, 𝑇, 𝒙), 𝑡 ∈ 𝑁} . We then train a model  𝚯  offline so that 

for a time window [𝑡0,  𝑡𝐿], where L is the window length, any 

specific entity’s behavior data E(Ti, x), 𝑖 ∈ [0, 𝐿] can be encoded 

into a distributed representation v: [v], 𝚯〈𝑬(𝑇𝑖 , 𝐱)〉 → 𝒗 . 

Thereafter at moment 𝑡𝐿  the entity can be clustered online into a 

group Gk, 𝑘 ∈ 𝐾 and K is the given number of total groups, by 

maximizing the similarity of entities within the same group. 

3.2 Transformer-based encoder  

We construct a transformer-based encoder-decoder network to 

learn the entity’s behavior representation. The system follows the 

design of the original transformer architecture (Vaswani et al., 

2017). A fixed length of events E'i is fed to the encoder. The 

feature vector and timestamp are encoded through value and 

position separately. The encoder includes number (l) of identical 

layers to perform self-attention calculation and generates 

representation v after a fully connected layer. Decoder is fed with 

a length of L+P (L+P < N) of events E'i that are truncated from Ei. 

This sequence is divided into two parts: [E'0, E'L] and [E'L+1, 

E'L+P]. Segment [E'L+1, E'L+P] is masked as zero values to train the 

encoder and decoder to minimize the loss function defined as 

mean square error (MSE) between output [yL+1, yL+P] and [E'L+1, 

E'L+P]. In other words, the network is trained as a sequence 

prediction task. After the encoder-decoder network is trained, we 

discard the decoder part and keep the encoder model 𝚯  to 

generate representation in the peer grouping flow. 

    To overcome the disadvantages of 𝒪(𝑙2) time complexity and 

𝒪(𝐽 ⋅ 𝑙2) space complexity that exists in vanilla attention layers, 

we adopt the ProbSparse self-attention mechanism proposed by 

Zhou et al. (2021). It was shown that self-attention has long-tail 

distribution, i.e., there are only a few dot-products of key-query 

pairs that are significant, and most others can be ignored. If we 

approximate the ith row of query’s sparsity as max-mean 

measurement  

 

𝑀̂(𝑞𝑖, 𝐾) = max {𝑒

𝑞𝑖𝑘𝑗
𝑇

√𝑑 } −
1

𝐿𝐾
∑

𝑞𝑖 𝑘𝑗
𝑇

√𝑑

𝐿𝐾

𝑗=1

 

 

and limit query to be those with top u  

𝑀̂(𝑞𝑖 , 𝐾), where  

𝑢 = 𝑐 ∙ ln 𝐿𝑄 

we then use a sparse query matrix 𝑄̅ to calculate ProbSparse self-

attention as, 

 

𝐴(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄̅𝐾𝑇

√𝑑
)𝑉 

 

for which both time complexity and space complexity is reduced 

to 𝒪(𝐿𝐾 ln 𝐿𝑄).  

 

 

Figure 2: Diagram of Transformer-based Entity Behavior 

Representation Learning 

     As shown in Figure 2, a convolution layer plus pooling is 

added to distill self-attention to reduce redundant and space 

complexity is further reduced to 𝒪((2 − 𝜀) ∙ 𝑙 ∙ log 𝑙).  

     Unlike RNN that can use its recursive structure to capture 

sequential features, the transformer uses dot-product self-attention 

and thus relies on position encoding. For local timestamps relative 

to the start moment of a certain fixed time window, position 

embedding is simply the index of each event within the current 

model window. For global timestamps, we construct time features 

by hour frequency, yielding 4 features: hour of day, day of week, 

day of month and day of year. This global timestamp feature 

vector is added to a local timestamp position encoding to form 

timestamp embedding. 

3.3 Online peer grouping 

Our first system uses Dynamic Time Warping (DTW) as the 

distance measure (Petijean et al., 2014) and an online K-means 

(Liberty, Sriharsha and Sviridenko, 2016) to group (i.e., to cluster) 

peer entities based on their streaming behavior data. DTW is a 

widely used technique for finding similarity between two time-

series but known as computationally expensive due to its pairwise 

similarity approach. 
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4 Experiments and Results 

4.1 Data and setup 

To form a dataset to conduct experiments in this study, we 

extracted data from a Window security log, which covers 23 days 

for a total of ~700 million events. Only these events are used: user 

logged on (4624), special privileges assigned (4672), Kerberos 

service ticket requested (4769) and account credential validation 

(4776). Records are aggregated with a fixed tumbling window 

size of 1 hour. A total of 8 features are extracted, and their 

distribution statistics are listed in Table 1. 

 

 
max. min. stdev 

nonzero 

(%) 

Authorization to Domain 

Controllers 
47,378 45 1,564 72 

Authorization to Servers 273,221 235 3,599 86 

Authorization to Other 

Workstations 
2,647,802 459 12,614 66 

Distinct DCs 75 3 3 72 

Distinct Servers 1,114 7 9 86 

Distinct Workstations 15,221 2 73 66 

Kerberos 43,554 137 2,623 86 

Credential Validation 2,647,802 588 13,689 85 

Table 1: Distribution Statistics of Individual Feature  

All model training experiments were conducted using an AWS 

p3.2xlarge instance with one Nvidia V100 GPU card. 

 

4.2 Results 

We first validate whether flow is implemented appropriately by 

checking training convergence. As shown in Figure 3, MSE loss 

converges well over iteration. There is oscillation on curves with 

regular intervals. The explanation is that training data is switched 

from one entity to another in a fixed pattern because we have 

padded all user accounts to have the same record length. 

 

 

Figure 3: Training convergence: MSE loss vs. Iteration 

 

     Hyperparameter tuning is then conducted to determine a set of 

parameters for subsequent tests. Grid search is run to tune 

transformer related hyper-parameters. The search space and final 

selected values are listed in table below, 

 

 Parameter Value 

 Tuning Range Selected 

Length of Input Sequence 192, 96, 48, 24 96 

Number of Encoder Layers (l) 6, 4, 3, 2 3 

Dimension of Hidden (d) 
512, 256, 128, 64, 

32 
64 

Head of Attention (a) 16, 8 8 

Table 2: Hyperparameters of Transformer Encoder 

The network with chosen hyper-parameters has about 11 

million trainable parameters. Using this optimized configuration, 

we show that the sequence can be successfully constructed, as 

visually shown in Figure 4 and quantitatively by the 

reconstruction error (MSE). 

 

𝜖𝑀𝑆𝐸 =
1

𝑁
∑

1

𝐿 × 𝑃

𝑁

𝑡=1

∑ ∑ ∑ (𝑥̃𝑖,𝑗[𝑡, 𝑚] − 𝑥𝑖,𝑗[𝑡, 𝑚])
2

𝑀

𝑚=1

𝑃

𝑗=1

𝐿

𝑖=1

 

 

where N is number of test sequence, L is length of context 

sequence, P is the length of marked data point (prediction length 

in sequence prediction task), and M is the dimension of feature 

vector. The average is 0.0985 in range of [0.0411, 0.2399] across 

our hyperparameter grid search results. 

 

Figure 4: Original and reconstructed data for sampled 2 

features 

     We validate computation resource consumption of probability 

self-attention, and the result is shown in Figure 5. It roughly 

shows 𝒪(𝐿 ln 𝐿)  trend for both runtime and GPU memory 

consumption, which is the expected behavior.  
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Figure 5: Run time and memory efficiency of probability self-

attention mechanism. 

We now visualize the clusters formed by the latent 

representation. The representation encoder trained from historical 

data was applied on the newly streamed-in data from each entity 

and generated corresponding representation vector. We then do 

PCA and use t-SNE to generate a 2D view of these vector’s 

distribution as shown in Figure 6. As we can see from the plot, 

representation vectors form several clusters with good 

concentrations. This shows that our encoder can catch the 

behavior characteristics from devices’ activity records and form 

the right representation. It should be noted that in our application, 

peer grouping is used as a data preparation step before the threat 

assessment engine. Therefore, the count of clusters is not 

essential. Instead, separation of clusters and their density is more 

important for subsequent tasks to achieve better performance. 

 

Figure 6: Distribution of representation of vectors generated 

from transformer-based encoder 

Finally, we compare the trained representation vectors with 

time warping to validate that our new encoder approach can 

generate better input for the downstream peer grouping module. 

We use the Davies-Bouldin Index (Halkidi, Batistakis and 

Vazirgiannis, 2001) to measure the quality of representation 

generated from the transformer-based encoder and time warping. 

Considering the infinite length of streaming data, we use data in a 

certain length to evaluate the index. Various time windows sizes 

are chosen to perform comparison. Results are summarized in 

Table 3. As shown in the table, our encoder approach outperforms 

time warping approach for various time window sizes. Also, it can 

be noticed that time warping’s performance declines as the 

window size increases, while our encoder approach stays 

relatively stable. It is persuasive that this encoder approach 

generates a better separation between groups that downstream 

peer grouping modules will benefit from. 

 

Window Size 

(hours) 

Davies-Bouldin Index (K=10) 

Time Warping Encoder 

8 0.8178 0.7586 

24 1.0555 0.5770 

48 1.2213 0.7171 

Table 3: Cluster performance comparison between 

representation from transformer-based encoder and time 

warping 

SUMMARY 

 

We proposed and showed a flow to use a transformer-based 

encoder to learn representation of entity behavior from historical 

data. Transformer’s self-attention is calculated based on dot-

product probability distribution to generate sparse query matrix, 

so that both time and space complexity can be reduced to  

𝒪(𝐿 ln 𝐿) . Convolution and max pooling layers are added to 

further reduce the resource requirement of the attention 

mechanism. The learned representation is successfully applied to 

a subsequent peer grouping task on real-world security log data. 

Results show that representation obtained in this flow can 

improve peer grouping’s performance. Potentially, other 

downstream machine learning tasks for threat detection might 

benefit from this representation as well. 

     As next steps, we want to improve the scalability of the 

proposed method and explore a more advanced architecture. It 

will also be interesting to conduct benchmarks against other 

newly published representation learning techniques such as 

temporal neighborhood coding (TNC) (Tonekaboni, Eytan and 

Goldengerg, 2021). 
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