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ABSTRACT
Deep learning models have recently become popular for detect-
ing malicious user activity sessions in computing platforms. In
many real-world scenarios, only a few labeled malicious and a
large amount of normal sessions are available. These few labeled
malicious sessions usually do not cover the entire diversity of all
possible malicious sessions. In many scenarios, possible malicious
sessions can be highly diverse. As a consequence, learned session
representations of deep learning models can become ineffective
in achieving a good generalization performance for unseen mali-
cious sessions. To tackle this open-set fraud detection challenge, we
propose a robust supervised contrastive learning based framework
called ConRo, which specifically operates in the scenario where only
a fewmalicious sessions having limited diversity is available. ConRo
applies an effective data augmentation strategy to generate diverse
potential malicious sessions. By employing these generated and
available training set sessions, ConRo derives separable representa-
tions w.r.t open-set fraud detection task by leveraging supervised
contrastive learning. We empirically evaluate our ConRo frame-
work and other state-of-the-art baselines on benchmark datasets.
Our ConRo framework demonstrates noticeable performance im-
provement over state-of-the-art baselines.
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1 INTRODUCTION
Computing platforms, such as social networking sites and cloud
systems, experience large volumes of malicious or fraudulent activ-
ities due to the anonymity and openness of the Internet. It is critical
to identify such malicious activities in order to protect legitimate
users. In practice, the activities of a user are usually modeled as an
activity session. For example, in a computer system, an activity ses-
sion is a sequence of user activities starting with log-in and ending
with log-out. A popular approach for detecting malicious sessions
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is through deep learning models [15]. The main idea is to derive
session representations by making normal sessions deviate from
malicious ones in the representation space for deriving anomaly
scores.

In many real-world fraud detection scenarios, only a few labeled
malicious and an abundance of normal sessions are available [15,
16]. These few available malicious sessions usually do not suffi-
ciently cover the entire diversity of all possible malicious sessions.
It is well known that malicious sessions can be highly diverse [15].
Many attackers keep evolving their activity patterns to avoid detec-
tion. Such malicious sessions are usually not available for training
a deep learning model. Suppose a deep learning model is trained
by utilizing a few available malicious sessions. Now in the testing
phase, due to the large diversity in the possible malicious sessions,
the test set distribution might be different from the training set
distribution. For example, the training set might contain only a few
types of malicious sessions, and the test set might include other
types of malicious sessions that are not observed in the training
set. Hence, the learned session representations by using these few
malicious sessions in the training set might not be discriminative
enough to achieve good generalization on detecting unseen mali-
cious sessions. Clearly, the fraud detection task is essentially an
open-set detection task.

The existing deep anomaly detection approaches which operate
on the setting of a few available anomalous samples, employ metric
learning [12, 13] or deviation loss based learning [9, 10]. These
approaches attempt to obtain a decision boundary by using a few
available anomalies. However, these approaches can easily overfit
w.r.t seen anomalies and can suffer from poor generalization perfor-
mance if the anomalies encountered during the testing stage deviate
from the training set anomalies [1]. To address this challenge, re-
cently Ding et al. [1] presented a novel open-set deep anomaly
detection approach. They train their model to detect unseen anom-
alies by jointly employing: (1) a data augmentation strategy through
which they generate augmented samples that can closely resemble
unseen anomalies, and (2) learning in the latent residual representa-
tion space. However, their approach has been specifically designed
to operate on image data. In the fraud detection domain, we have
additional challenges when compared to the image domain. For
example in image data, the normal samples are assumed to have
shared features. However, in the fraud detection domain, even nor-
mal sessions can also exhibit large diversity. Therefore, learning
separable representations for the open-set fraud detection task is
challenging.

To address these challenges, we make the following contribu-
tions.

• We propose a novel framework called ConRo which is specif-
ically designed for the open-set fraud detection task. Our
ConRo framework operates in a scenario where only a few
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malicious and a large amount of normal sessions are avail-
able.

• We propose a Long-Short Term Memory (LSTM) based ses-
sion encoder which is trained by employing both supervised
contrastive and DeepSVDD losses.

• We propose a data augmentation strategy to generate diverse
potential malicious sessions in the representation space. We
propose a strategy to filter generated false positive sessions.

• We present an empirical study on three benchmark fraud
detection datasets: CERT [4], UMD-Wikipedia [8], and Open-
stack [2] in which, we show superior performance of our
ConRo framework over state-of-the-art baselines.

2 CONRO FRAMEWORK
The user activities are modeled through activity sessions. Each
session can consist of 𝑇 user activities. Let 𝑒𝑖𝑡 (1 ≤ 𝑡 ≤ 𝑇 ) denote
the 𝑡𝑡ℎ activity of the 𝑖𝑡ℎ session. Each activity in a session is
represented by an embedding vector, which can be trained based
on the word-to-vector model. Let x𝑖𝑡 ∈ R𝑑 denote the word-to-
vector representation of activity 𝑒𝑖𝑡 , where 𝑑 denotes the number
of representation dimensions. Here, x𝑖 = {x𝑖𝑡 }𝑇𝑡=1 denotes the
raw representation of the 𝑖𝑡ℎ session. Let X and Y denote the raw
input representation of sessions and label set, respectively. Here,
Y = {0, 1} where 𝑦 = 0 and 𝑦 = 1 denote normal and malicious
sessions, respectively. Let D denote the test set distribution over
X×Y wherein, the test samples are drawn fromD. The training set
T contains a large amount of normal and a few malicious sessions.
Let T 0 and T 1 denote sets of normal and malicious sessions in
T , respectively. The malicious sessions sampled from D will also
contain those unseen malicious sessions which are not present in
T 1.

Our ConRo framework has an encoder network that maps a
session from its raw representation x to an encoded representation
vector z. We adopt LSTM as the foundation of our encoder to derive
the encoded session representations. Our encoder consists of two
hidden layers with the same dimensions. The hidden representa-
tions derived from the top layer of LSTM for the activities in the ses-
sion x𝑖 are denoted as {h𝑖𝑡 }𝑇𝑡=1. Here, h𝑖𝑡 ∈ R𝑑 . Then, the encoded
session representation z𝑖 ∈ R𝑑 is computed as z𝑖 = 1

𝑇

∑𝑇
𝑡=1 h𝑖𝑡 .

The main challenge which we are addressing is to design a proce-
dure to obtain malicious sessions which are sampled from the test
set distributionD. To address this challenge, we construct potential
malicious sessions which can be similar to malicious sessions sam-
pled from D. There are two main objectives for generating these
potential malicious sessions:MO1.Malicious sessions usually form
multiple clusters in the encoded representation space [5]. Malicious
sessions belonging to the same cluster usually share close similari-
ties. Hence, we need to generate potential malicious sessions which
are similar to a seen malicious session x𝑖 ∈ T 1. MO2. Suppose
there are 𝐾 malicious session clusters. However, the training set
T might only contain 𝑁 (𝑁 < 𝐾) session clusters, and sessions
belonging to remaining 𝐾 − 𝑁 clusters are not present in T . Note
that the malicious sessions from these 𝐾 − 𝑁 unseen clusters can
diverge significantly from seen malicious sessions. We need to gen-
erate potential malicious sessions which belong to those 𝐾 − 𝑁
clusters to effectively train our encoder. ConRo achieves these main

objectives by employing a two stage encoder training procedure.
We provide detailed descriptions of both these stages below.

2.1 First Stage
In the first stage, our encoder achieves two goals: (1) It learns
shared features for normal sessions and learns to contrast normal
sessions with seen malicious sessions in the encoded representation
space. As a consequence, our encoder learns separable representa-
tions w.r.t to normal and seen malicious sessions. (2) It compresses
normal session representations inside a minimum volume hyper-
sphere in the encoded representation space. To achieve the first
goal, we leverage the idea of supervised contrastive learning, which
can learn separable representations w.r.t to normal and seen mali-
cious sessions. Then, to achieve the second goal, we leverage the
DeepSVDD loss [12], which pushes the normal samples inside a
minimum volume hyper-sphere.
Supervised contrastive loss. We construct a training batch de-
noted as 𝑆 = {x𝑖 }𝑅𝑖=1 by obtaining 𝑅 random samples from T . Since
ConRo is specifically designed to operate on imbalanced training
data, in order to effectively contrast malicious sessions with nor-
mal sessions, for each training batch 𝑆 , we create a corresponding
auxiliary batch 𝑆1 = {x1

𝑖
}𝑀
𝑖=1, by randomly sampling𝑀 malicious

sessions from T 1. We leverage a supervised contrastive loss func-
tion similar to the one presented by Khosla et al. [6]. This loss
function is given by:

L𝑆𝑢𝑝 =
1
𝑅

𝑅∑︁
𝑖=1

(1 − 𝑦𝑖 )
©­« 1
|𝐵0 (x𝑖 ) |

∑︁
x𝑝 ∈𝐵0 (x𝑖 )

𝑙
(
z𝑖 , z𝑝 , 𝐴(x𝑖 )

)ª®¬ (1)

Here, the set 𝐴(x𝑖 ) is defined as
(
𝑆 ∪ 𝑆1

)
− {x𝑖 }, and the set

𝐵0 (x𝑖 ) =
{
x𝑝 ∈ 𝐴(x𝑖 ) |𝑦𝑝 = 0

}
indicates samples x𝑝 in 𝐴(x𝑖 ) with

labels 𝑦𝑝 = 0. The individual loss 𝑙
(
z𝑖 , z𝑝 , 𝐴(x𝑖 )

)
between the pair

(x𝑖 , x𝑝 ) is defined as:

𝑙
(
z𝑖 , z𝑝 , 𝐴(x𝑖 )

)
= − log

(
𝑒𝑥𝑝 (cos

(
z𝑖 · z𝑝

)
/𝛼)∑

x𝑗 ∈𝐴(x𝑖 ) 𝑒𝑥𝑝 (cos
(
z𝑖 · z𝑗

)
/𝛼)

)
, (2)

where 𝛼 denotes the temperature parameter.
DeepSVDD loss. We leverage a DeepSVDD loss function which is
similar to the one presented by Ruff et al. [12]. Let v0 = 1

𝑅0

∑𝑅
𝑖=1 (1−

𝑦𝑖 )z𝑖 denote the estimated center of normal sessions in the encoded
representation space and 𝑅0 =

∑𝑅
𝑖=1 I(𝑦𝑖 = 0), where I(·) is an

indicator function. This loss function is given by:

L𝑆𝑉 =
1
𝑅

𝑅∑︁
𝑖=1

(1 − 𝑦𝑖 ) (| |z𝑖 − v0 | |2) (3)

The loss function for the first stage is given by:

L1 = L𝑆𝑢𝑝 + L𝑆𝑉 (4)

To effectively address the session diversity challenge, we employ
an alternating approach to optimize our encoder through L1. For
each training batch 𝑆 = {x𝑖 }𝑅𝑖=1, we first train our encoder through
L𝑆𝑢𝑝 . As a result, we force the encoder to learn shared features for
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normal sessions and contrast with seen malicious sessions in the en-
coded representation space (goal 1). Then, by using the same batch
𝑆 , we train the encoder through L𝑆𝑉 , which forces the encoder to
compress normal session representations inside a minimum volume
hyper-sphere in the encoded representation space (goal 2). Let 𝑟
denote the radius of the normal session hyper-sphere obtained after
first stage training.

2.2 Second Stage
First objective. We generate similar potential malicious sessions
which are similar to a seen malicious session x𝑖 ∈ T 1. Recently,
Verma et al. [14] proposed a mix-up based data augmentation strat-
egy for sequential data. Their augmentation strategy is inspired
by the concept of convex sets and generates augmented samples
that are similar to their original version. Specifically, they gen-
erate augmented samples by performing a mix-up operation on
the encoded representations of original samples. Hence, we lever-
age a mix-up based augmentation strategy which is similar to the
one presented by Verma et al. [14] for generating similar potential
malicious sessions which are similar to a seen malicious session
x𝑖 ∈ T 1.

Let 𝐺1 (x𝑖 ) denote this set of generated similar potential ma-
licious sessions. The set 𝐺1 (x𝑖 ) is defined as 𝐺1 (x𝑖 ) = {̂z |̂z =

𝜆1z𝑖 + (1 − 𝜆1)z𝑗 }. Here, ẑ denotes the encoded representation
of a generated similar potential malicious session, x𝑗 ∈ 𝐵1 (x𝑖 ) ={
x𝑝 ∈ 𝐴(x𝑖 ) |𝑦𝑝 = 1

}
indicates samples x𝑝 in𝐴(x𝑖 ) with labels𝑦𝑝 =

1, 𝜆1 is sampled from the Uniform distribution 𝑈 (𝛽1, 1) where
𝛽1 ∈ [0, 1], and 𝛽1 is set closer to 1 to ensure that generated poten-
tial malicious sessions have close similarities with x𝑖 .
Second objective. We generate diverse potential malicious ses-
sions which can diverge significantly from a seen malicious session
x𝑖 ∈ T 1. Let 𝐺1 (x𝑖 ) denote this set of generated potential mali-
cious sessions. Our session augmentation strategy is inspired by
the concept of affine sets. The set 𝐺1 (x𝑖 ) is defined as 𝐺1 (x𝑖 ) =

{̃z |̃z = 𝜆2z𝑖 + (1 − 𝜆2)z𝑗 , 𝑓 𝑝 (̃z) = 0}. Here, z̃ denotes the encoded
representation of a generated diverse potential malicious session,
𝜆2 ∼ 𝑈 (−𝛽2, 𝛽2), and 𝛽2 ∈ R. We treat 𝛽2 as a hyper-parameter in
our empirical studies. We filter a false positive through the function
𝑓 𝑝 (·) as:

𝑓 𝑝 (̃z) =
{
1, if | |̃z − v0 | |2 ≤ 𝑟
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

Second stage loss. We again leverage supervised contrastive loss
to design our second stage loss function which is given by:

L2 =
1
𝑅

𝑅∑︁
𝑖=1

[
𝑦𝑖

(
1

|𝐷 (x𝑖 ) |
∑︁

x𝑝 ∈𝐷 (x𝑖 )
𝑙
(
z𝑖 , z𝑝 ,𝐶 (x𝑖 )

) )]
(6)

Here,𝐶 (x𝑖 ) = 𝐴(x𝑖 )∪𝐺1 (x𝑖 )∪𝐺1 (x𝑖 ),𝐷 (x𝑖 ) = 𝐵1 (x𝑖 )∪𝐺1 (x𝑖 )∪
𝐺1 (x𝑖 ) and 𝑙

(
z𝑖 , z𝑝 ,𝐶 (x𝑖 )

)
denotes the individual loss between the

pair (x𝑖 , x𝑝 ) corresponding to the malicious sessions defined as:

𝑙
(
z𝑖 , z𝑝 ,𝐶 (x𝑖 )

)
= − log

(
𝑒𝑥𝑝 (cos

(
z𝑖 · z𝑝

)
/𝛼)∑

x𝑗 ∈𝐶 (x𝑖 ) 𝑒𝑥𝑝 (cos
(
z𝑖 · z𝑗

)
/𝛼)

)
(7)

Inference. After the second stage training, our encoder has learnt
to push seen malicious sessions, similar and diverse potential mali-
cious sessions closer in the encoded representation space, and as a
consequence, all these sessions form a tight cluster in the encoded
representation space. Normal sessions are also tightly clustered in
the encoded representation space due to the effect of first stage
training. Hence, we design our inference strategy by analyzing the
proximities of a test case session to the centers of normal and mali-
cious sessions in the encoded representation space. Let v1 denote
the estimated center of malicious sessions in the encoded repre-
sentation space, which is given by v1 = 1

𝑀

∑𝑀
𝑖=1 z

1
𝑖
, where {x1

𝑖
}𝑀
𝑖=1

denotes𝑀 randomly sampled malicious sessions from T 1. For any
test case session x, ConRo predicts its label as:

𝑙𝑎𝑏𝑒𝑙 (x) =
{
1 if | |z − v1 | |2 < | |z − v0 | |2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3 EXPERIMENTS
3.1 Experimental Setup
3.1.1 Datasets. We use three benchmark fraud detection datasets
for our empirical study: CERT [4], UMD-Wikipedia [8], and Open-
Stack [2].
CERT [4]. The CERT dataset is a comprehensive dataset for in-
sider threat detection. There are 48 malicious and 1,581,358 normal
sessions. The insider sessions are chronologically recorded over 516
days. To avoid extreme training latency, we randomly sample 10,000
normal sessions from the first 460 days as the normal sessions in
training set T . Similarly, we randomly sample 500 normal sessions
from 461 to 516 days to construct our test set. There are 5 types of
malicious sessions. (1) Logon: The insider logs on a computer during
weekends or on a weekday after work hours. (2) Email: The insider
sends/views unexpected emails to/from external sources. (3) HTTP :
The insider uploads/downloads organizational information to/from
external malicious websites. (4) Device: The insider connects a de-
vice such as removable drives during weekends or on a weekday
after work hours. (5) File: The insider manipulates organizational
files with malicious intentions. We construct a biased training set
corresponding to malicious sessions wherein, we include device,
email, and file malicious session types in the training set and re-
maining two types in the test set. Specifically, we include 30 and 18
malicious sessions in the training and test sets, respectively.
UMD-Wikipedia [8]. This dataset consists of activity sessions of a
set of users who have edited the Wikipedia website. In this dataset,
there are 5486 normal and 4627 malicious sessions. We randomly
sample 1000 normal sessions to construct the test set and include
all the remaining 4486 normal sessions in the training set. For the
malicious sessions, in-order to simulate open-set and imbalanced
dataset scenario, we construct the training set by leveraging and
suitably adapting the procedure utilized by Du et al. [3], which is
described below. We calculate the appropriate number of malicious
session clusters (𝐾) in the available malicious sessions by using
silhouette coefficient analysis [11]. From our empirical study, we get
𝐾 = 3. Then, we randomly sample 70 and 10 malicious sessions
from the first and second malicious session clusters, respectively,
and include them in the training set. From the remaining malicious
sessions, we randomly sample similar number of malicious sessions
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from each of the 3 clusters to construct the test set which contains
500 malicious sessions.
OpenStack [2]. This dataset records the activity sessions of users
who have used the OpenStack cloud services. In this dataset, there
are 244,908 normal and 18,434malicious sessions.We randomly sam-
ple 10,000 and 1000 normal sessions and include them in our training
and test sets, respectively. For the malicious sessions, through sil-
houette coefficient analysis we get 𝑘 = 12 malicious session clusters.
We randomly sample 50 and 10 malicious sessions from the first
and second malicious session clusters, respectively, and include
them in the training set. From the remaining malicious sessions,
we construct a test set having 120 malicious sessions by randomly
sampling equal number of malicious sessions from each of the 12
malicious session clusters.

3.1.2 Training Details. By considering a user activity session as a
sentence, we train the word-to-vector model to derive the activity
representation. The minimum activity frequency is set as 1 since
every activity is given importance in the design. To effectively
train our session encoder, we set the number of dimensions of the
activity and session representations as 𝑑 = 50. Since we generate
encoded session representation by averaging the output sequence
of the LSTM model, we set the hidden layer size of LSTM to 50. The
temperature parameter 𝛼 shown in Equations 2 and 7 is set to its
default value 1. We opt for medium sized training batches in order
to avoid extreme memory requirements during encoder training.
Specifically, we use 100 sessions (𝑅) in each training batch. We set
the size of the malicious session auxiliary batch (𝑀) as 20. The sizes
of potential malicious session batches |𝐺1 (x𝑖 ) | and |𝐺1 (x𝑖 ) | are set
as 20 and 200, respectively. For 𝛽1, we set its value as 0.92 because it
is supposed to be closer to 1. For 𝛽2, we set its value as 4 in order to
generate potential malicious sessions which are sufficiently diverse.
We use the Adam optimizer [7] with a learning rate of 0.005 and
we use 10 training epochs for both stages. We utilize three metrics
to measure the anomaly detection performance: 𝐹1, False Positive
Rate (FPR), and Area Under the Receiver Operating Characteristics
Curve (AUC-ROC). We report the mean and standard deviation of
performance scores after 5 times of running.

3.1.3 Baselines. We compare our ConRo framework with four
state-of-the-art baselineswhichwere specifically designed for anom-
aly detection: DeepSVDD [12], DeepSAD [13], DevNet [10, 9], and
Swan [1]. All these baselines operate in the setting where only a few
anomalous samples are available. DeepSVDD, DeepSAD, and De-
vNet have been designed for closed set anomaly detection whereas,
Swan has been designed for open-set anomaly detection. These
baselines originally operate on image datasets and employ neural
networks for image data such as CNN [13], ResNet-18 [1] etc. Hence,
they cannot be directly applied for our fraud detection task which
operates on sequential data. We replace their neural networks with
our LSTM-based session encoder and adapt these baselines to our
fraud detection task. We employ the same training set used for our
ConRo to train all these baselines. We use 150 epochs to train all
baselines. For Swan, the original augmentation technique is image-
specific. Hence, we replace it with the augmentation technique
proposed by Verma et al. [14]. Additionally, the unseen malicious

sessions are detected in a residual representation space which is
defined as: v0 − z.

3.2 Experimental Results
3.2.1 Overall Comparison. The performance of our ConRo frame-
work and baselines for all datasets are shown in Table 1. Clearly,
our ConRo outperforms all baselines1 w.r.t most of the performance
metrics. These baselines do not learn effective class-specific shared
features in the encoded representation space. Thus, due to the
combined challenges of session diversity, dataset imbalance, and
biased malicious training samples, they fail to provide noticeable
results. However, ConRo addresses all these challenges effectively.
It addresses the session diversity challenge through supervised con-
trastive learning. It addresses the dataset imbalance challenge by
generating a large number of augmented/potential malicious ses-
sions. Finally, it addresses the challenge of biased malicious training
samples by generating diverse potential malicious sessions.

For the UMD-Wikipedia dataset, Swan noticeably outperforms
our ConRo w.r.t FPR score. The mechanisms of ConRo and Swan
are different. Specifically, Swan learns to identify unseen malicious
sessions in a residual representation space (v0 − z) whereas, ConRo
learns to identify unseen malicious sessions by generating a large
amount of diverse potential malicious sessions. In UMD-Wikipedia
dataset, many normal sessions share close similarities with unseen
malicious sessions. Therefore, ConRo identifies some of the test
normal sessions sharing close similarities with test malicious ses-
sions as malicious (false positive) which negatively impacts the
FPR scores of ConRo. However, Swan does not specifically address
the session diversity challenge in malicious sessions due to which,
Swan under-performs against ConRo w.r.t F1 and AUCROC scores.

3.2.2 Ablation Analysis. We conduct the ablation analysis study on
our ConRo framework by ablating the following main components:
stage 1, L𝑆𝑢𝑝 , L𝑆𝑉 , Alternating Optimization (AO), stage 2, 𝑓 𝑝 (·),
𝐺1 (·), and 𝐺1 (·). The ablation analysis results are shown in Table
2.
W/o stage 1. Mean F1 scores drop to 18.33 (CERT), 40.23 (UMD-
Wikipedia), and 14.92 (Open-Stack). Stage 1 ensures that the encoder
learns shared features for normal sessions. Without learning these
shared features, the encoder fails to achieve tight class-specific
clusters in the encoded representation space.
W/o L𝑆𝑢𝑝 . Mean F1 scores drop to 5.28 (CERT), 53.16 (UMD-
Wikipedia), and 15.12 (Open-Stack). Both normal and malicious
sessions typically exhibit large diversity and L𝑆𝑢𝑝 is essential to
address this session diversity challenge. We can see that there is a
significant drop in F1 scores on CERT and Open-Stack datasets but
not in the case for UMD-Wikiepdia dataset. We can attribute the
reason to the different characteristics of these datasets. Addressing
the session diversity challenge for the normal sessions is much
more critical in both CERT and Open-Stack datasets than in the
UMD-Wikipedia dataset.
W/o L𝑆𝑉 . Mean F1 scores drop to 20.10 (CERT), 64.95 (UMD-
Wikipedia), and 38.76 (Open-Stack). The DeepSVDD loss L𝑆𝑉 en-
ables the encoder to push normal sessions in a minimum volume

1Since DevNet classifies all test sessions as normal, we have not shown its performance
scores. Devnet does not employ any augmented malicious sessions for its training, so
it cannot effectively address the dataset imbalance challenge.
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Table 1: Performances of our ConRo and baselines (mean±std). The higher the better for F1 and AUC-ROC. The lower the better
for FPR. The best values are bold highlighted.

Models CERT UMD-Wikipedia Open-Stack
F1 FPR AUC-ROC F1 FPR AUC-ROC F1 FPR AUC-ROC

DeepSVDD 14.67±4.1 14.30±1.8 62.29±4.8 33.23±1.7 44.90 ±1.4 46.47±0.8 32.27±0.7 42.10±1.4 79.02±0.7
DeepSAD 24.71±7.5 20.53±7.1 84.17±3.6 56.88±2.9 13.30±0.2 68.35±1.7 67.43±3.1 9.70±1.3 94.12±0.1
Swan 59.31±2.2 0.0±0.0 72.12±0.1 57.02±0.9 0.0±0.0 69.89±0.5 62.93±4.2 0.0±0.0 73.10±2.3
ConRo 68.33±3.9 2.20±0.5 90.50±0.3 71.40±2.3 31.50±2.1 79.50±2.1 77.56±2.3 5.80±0.8 97.10±0.4

Table 2: Ablation analysis results (mean±std).

Models CERT UMD-Wikipedia Dataset Open-Stack
F1 FPR AUC-ROC F1 FPR AUC-ROC F1 FPR AUC-ROC

w/o stage 1 18.33±1.2 25.10±0.3 78.56±1.1 40.23±1.3 28.37±1.9 55.55±1.1 14.92±1.7 47.14±2.3 49.43±2.9
w/o L𝑆𝑢𝑝 5.28±0.2 48.10±1.8 45.44±0.9 53.16±2.3 25.10±1.9 64.65±1.9 15.12±1.4 46.90±2.7 49.78±2.4
w/o L𝑆𝑉 20.10±1.1 27.05±1.3 83.72±0.7 64.95±0.8 18.85±6.1 73.72±0.5 38.76±0.8 31.60±1.1 84.20±0.4
w/o AO 8.99±0.4 68.46±3.1 62.98±1.6 52.04±1.4 80.30±1.4 55.68±1.9 14.08±2.1 26.16±1.4 50.59±2.3

w/o stage 2 42.86±1.1 0.0±0.0 63.84±0.1 60.90±1.1 23.85±1.6 70.42±0.6 46.11±3.4 0.0±0.0 65.40±1.6
w/o 𝑓 𝑝 (·) 31.32±5.1 26.66±6.3 72.77±3.1 59.38±1.8 65.52±4.2 65.95±2.6 37.50±3.7 49.60±3.6 48.16±3.5
w/o Ĝ1 (·) 55.92±1.2 4.13±0.3 89.49±0.2 65.58±2.6 31.20±0.3 74.04±2.3 67.57±1.1 9.60±0.4 95.20±0.2
w/o G̃1 (·) 44.17±1.9 7.10±0.6 88.16±0.3 63.40±0.8 31.70±4.7 72.10±0.6 52.26±1.6 18.10±1.4 90.61±0.2

hyper-sphere in the encoded representation space. Without this
topological effect, the efficacy of stage 2 reduces because the gener-
ated diverse potential malicious sessions do not effectively cover
unseen malicious sessions.
W/o AO . By employing the joint optimization approach, mean
F1 scores drop to 8.99 (CERT), 52.04 (UMD-Wikipedia), and 14.08
(Open-Stack). Optimizing DeepSVDD objective (L𝑆𝑉 ) can yield
maximum benefits only when the input normal sessions have
considerable shared features in the encoded representation space.
Here, we jointly optimize both supervised contrastive (L𝑆𝑢𝑝 ) and
DeepSVDD objectives, and we do not specifically provide normal
sessions having considerable shared features in the encoded repre-
sentation space as inputs to the DeepSVDD objective. As a conse-
quence, we can observe a significant drop in the performance.
W/o stage 2 . Mean F1 scores drop to 42.86 (CERT), 60.90 (UMD-
Wikipedia), and 46.11 (Open-Stack). In stage 1 training, our encoder
learns to contrast normal sessions with few available malicious
sessions having limited diversity. Stage 2 generates diverse poten-
tial malicious sessions which can be similar to unseen malicious
sessions w.r.t their encoded representations. As a consequence, our
encoder can learn effective separable encoded representations w.r.t
open-set fraud detection task.
W/o fp(·). Mean F1 scores drop to 31.32 (CERT), 59.38 (UMD-
Wikipedia), and 37.50 (Open-Stack). Without employing 𝑓 𝑝 (·), the
encoder learns to push malicious sessions and those potential ma-
licious sessions which are false positives, closer in the encoded
representation space. Due to this improper learning effect, the en-
coder does not achieve effective separable encoded representations.
W/o Ĝ1 (·). Without employing the similar potential malicious ses-
sions during the second stage encoder training, mean F1 scores drop
to 55.92 (CERT), 65.58 (UMD-Wikipedia), and 67.57 (Open-Stack).

Generating similar potential malicious sessions which are similar
to a seen malicious session aids the encoder to learn more effective
separable representations. Additionally, Ĝ1 (·) aids in addressing
the dataset imbalance challenge.
W/o G̃1 (·). Without employing the diverse potential malicious ses-
sions during the second stage encoder training, mean F1 scores drop
to 44.17 (CERT), 63.40 (UMD-Wikipedia), and 52.26 (Open-Stack).
Generating diverse potential malicious sessions which can be sim-
ilar to unseen malicious sessions in the encoded representation
space, aids the encoder to effectively contrast normal sessions with
unseen malicious sessions, and can learn separable representations
w.r.t open-set fraud detection task.

4 CONCLUSION
In this work, we have developed a robust and open-set fraud de-
tection framework called ConRo, which is specifically designed to
operate in the scenario where only a few malicious sessions having
limited diversity are available for training. We developed a training
procedure for ConRo to learn separable session representations
by employing effective data augmentation strategies and by the
combined effect of supervised contrastive and DeepSVDD losses.
The empirical study on three benchmark datasets demonstrated
that our ConRo can outperform state-of-the-art baselines. In our fu-
ture work, we plan to extend ConRo to address specific distribution
shift scenarios such as sample selection bias. We will study how to
integrate bias correction approaches with supervised contrastive
learning.
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