Hybrid Attack Graph Generation with
Graph Convolutional Deep-Q Learning

Sam Donald, Rounak Meyur, Sumit Purohit
Pacific Northwest National Laboratory
Richland, Washington, USA
{Sam.Donald,Rounak.Meyur,Sumit.Purohit}@pnnl.gov

ABSTRACT

Effective risk mitigation for cyber-physical energy systems (CPES),
such as power grids, requires preemptive knowledge of likely ad-
versarial attack sequences. However, the scarcity of documented
attack sequences hinders this process. We propose a data-driven
Graph Convolutional Deep-Q Network (GCDQ) to address this lack
of data through generating hybrid attack graphs (HAGs) - a graphi-
cal representations of CPS attack sequences. By leveraging limited
real-world observations from the MITRE ATT&CK knowledge base,
our GCDQ model synthesizes realistic graphs with the targeted
attribute of minimum detectability via reinforcement learning. This
generative model is the first step in creating a tool to substantially
boost the attack sequence dataset and enhance the performance of
CPS defense-related tasks by providing insights into likely attack
sequences with given attributes.

CCS CONCEPTS

« Security and privacy — Malware and its mitigation; Comput-
ing methodologies — Sequential decision making.

KEYWORDS
graph generation, cyber attack modeling, attribute targeting

ACM Reference Format:

Sam Donald, Rounak Meyur, Sumit Purohit . 2023. Hybrid Attack Graph
Generation with Graph Convolutional Deep-Q Learning. In 3rd Workshop
on Al-Enabled Cybersecurity Analytics - KDD 2023. ACM, New York, NY,
USA, 7 pages.

1 INTRODUCTION

The ever increasing complexity of cyber attacks poses a contin-
ual challenge to agents seeking to defend cyber physical energy
system (CPES) infrastructure. In order to better understand and
prepare for attacks, cybersecurity professionals typically rely on
databases of prior documented attacks, such as those described by
the MITRE ATT&CK (Adversarial Tactics, Techniques, and Com-
mon Knowledge) framework. While detailed, these resources are

Sam Donald performed this research while employed as a Masters Intern at PNNL.
They can be reached at Samdonald@vt.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

AlI-Enabled Cybersecurity Analytics - KDD 2023, August 2023, Long Beach, CA, USA

© 2023 Association for Computing Machinery.

limited in number as data is typically restricted to publicly avail-
able intelligence and incident reports [14]. Due to the inability of
defenders to adequately prepare, unforeseen CPES attacks result in
an increased chance of severe impact and as such are attractive to
attackers including nation-states and organized crime groups.

Hybrid attack graphs (HAGs) provide a representation of possi-
ble attack sequences for a CPES, and incorporate the technique and
tactic categories used by the MITRE ATT&CK framework. Tactics
represent the high-level goals of an attack, and comprise of tech-
niques describing actions undertaken. These tactics are ordered to
represent successive goals typically undertaken to reach the ter-
minal tactic describing impacts such as system manipulation or
data destruction [2]. HAGs describe a CPES through a set of possi-
ble MITRE ATT&CK techniques, represented as nodes, along with
edges denoting their ordering within the attack sequence. A single
attack is represented as a linear sequence of techniques, while a
collection of attacks is represented as a graph describing potential
attack paths [4].

Given the limited set of existing HAGs, we aim to generate real-
istic synthetic HAGs with user defined traits, such as low detection
rates. In doing so we will bolster the existing dataset to improve
data-hungry downstream downstream models and provide a robust
tool for cyber analysts and applications capable of leveraging at-
tack sequences with specific traits. Deep learning-based generative
models have emerged as a promising approach to bolster limited
data sets. By training models to produce synthetic data from the
distribution underlying the limited source data, the effective data
set size can be increased. This approach is particularly useful when
data is scarce or difficult to collect, and is an ideal candidate for the
limited HAG dataset and our problem statement.

2 RELATED WORK

In [1], the authors generate molecular graph structures using re-
current neural networks (RNNs). A character-level RNN is used
to generate a string representation of molecules, which are post-
processed into to molecular graphs. While simple to implement,
this approach is significantly constrained by representing graphs
as a 1D sequence, allowing for both invalid sequences and prevent-
ing the expansion partial graphs. This model is extended by [18],
who introduce GRNN, a two stage LSTM based model capable of
generating graphs through iterative next node and edge predic-
tions conditioned by an existing graph. A 2-dimensional adjacency
matrix representation is used, and as such the GRNN is capable of
extending partial graphs, however it does not posses a method of
generating node features.

More recently, [10] uses Graph Recurrent Attention Networks
(GRANS), combining the strengths of graph convolutional neural

Al-Enabled Cybersecurity Analytics - KDD 2023, August 2023, Long Beach, CA, USA

networks (GCNs) and attention mechanisms to captures long-range
dependencies during the graph generation process. Similar to the
GRNN model, GRAN does not generate node features, yet outper-
forms it due to inclusion of GNN layers allowing for more expressive
latent representations.

A unique Reinforcement Learning (RL) method for graph gener-
ation is proposed by [17] though their Graph Convolutional Policy
Network (GCPN). The GCPN model combines a GCN for node em-
beddings and a multilayer perception (MLP) based generator to
produce graphs maximizing a user defined reward function. Similar
to the GRAN model, an intermediate graph and set of proposal
nodes are embedded, with the node embeddings used to generate
an action containing two nodes between which a new edge is added.
Associated with each action is a reward based on molecule solubility
and other features of interest, along with a discriminator loss from
a classifier trained under a GAN framework, with this reward used
to perform policy gradient optimization. Of the models described,
the GCPN allows for maximum flexibility though a user defined re-
ward function targeting specific attributes, along with its ability to
node features. While the GCPN outperforms prior state-of-the-art
methods, it is noted that both a large training dataset of 250,000
molecules was used along with multiple pre-training steps.

3 PROPOSED METHODS
3.1 Hybrid Attack Graph Dataset

Training HAGs are sourced from 620 documented software in-
stances within the MITRE ATT&CK enterprise database, with each
software described by a set of techniques it is capable of performing.
As these techniques are provided in the form of an unordered set,
an ordering scheme must be imposed to construct a HAG. This is
done through grouping techniques into their corresponding tactic,
ordering these groups by their tactic ID, and adding edges between
techniques in adjacent tactics. As the resultant HAGs from this
process are exceptionally dense, sparse HAGs are extracted by a
random walk algorithm with backtracking to simplify the task of
graph generation. This random walk algorithm is outlined within
appendix A.1, with figs. 1 and 2 displaying a sample dense and
sparse HAG from the MITRE ATT&CK enterprise database respec-
tively, along with their MITRE ATT&CK technique codes. Dense
graphs will be reconstructed from multiple generated sparse HAGs
through post-processing steps described in future work.

3.2 Graph Convolutional Deep-Q Learning

We propose a Graph Convolution Deep-Q Learning model (GCDQ),
inspired by the GCPN model described by [17]. Our model uses
Deep-Q learning (DQL) as opposed to policy gradient (PG) along
with a modified action generation procedure. These changes were
done to leverage the benefits of DQL, specifically its training stabil-
ity, ability for off-policy training, and sample efficiency [15], with
these features allowing for future models to be trained in an online
environment with minimal interactions.

3.2.1 Deep Q-Learning. The goal of Q-learning is to find an optimal
Q function, providing the long term value of an action for a given
state. For a policy 7 the true value of action a given state s is defined
by eq. (1), where a discount factor y € [0, 1] is used to balance

Donald, Meyur, Purohit

@ sn

T1091 /1020

_/ T1052
AN092

Figure 1: Sample Dense HAG

T1071

T1105

T1140

Figure 2: Sample Sparse HAG

immediate and delayed rewards, and Ry, is the reward at step n [15].
A parameterized version of Q-learning can then be implemented
through a neural network [8], with the process defined by egs. (1)
to (3).

Qn(s,a) =E(Ry +yR2 + y2R3 +... |So=s,A0=am) (1)

Target = Ry41 +ymax Qpocal (St+1, @) @)
a

Loss = MSE(Target, Qjocai (St ar)) (3)

In equation (2), Target is the ideal future discounted reward
that our Q-function neural network (Qj,.4;) aims to approximate,
and is the core concept of reinforcement learning whereby cumu-
lative discounted future rewards are maximized. The max term
highlights this principle, implying the optimal action a’ leads to a
state with the highest possible future rewards. While traditional
tabular Q-Learning methods ensure convergence to the optimal
Q-function, Q*, under certain conditions like infinite exploration

Hybrid Attack Graph Generation with Graph Convolutional Deep-Q Learning

[15], these guarantees may not apply when using function approxi-
mators such as neural networks due to the curse of dimensionality.
However with careful design and hyperparameter tuning similar
results can be reliably achieved in practical implementations [8].
Equation (3) then defines the network loss as the Mean Squared
Error (MSE) between the Target and the current Q-value estimate
of the state-action pair at time ¢, Qjocq1(St, ar). This loss quanti-
fies disagreement between our Q-function’s current estimate and
the Target, which we aim to minimize through usage of the Adam
optimizer by adjusting the parameters of Qjocai> Giocal-

The baseline deep Q-network (DQN) model described by egs. (2)
and (3) uses the max operation to both select and evaluate actions,
and commonly overestimates Q values [15]. Double Deep-Q net-
works (DDQNs) address this issue though utilizing two separate
networks, Qrarger and Qjocql, to select and evaluate actions respec-
tively, with the network weights of Qtarget, Otarget, incrementally
updated from Qj,.,; every 7 training steps via Polyak averaging
[16][11]. Applying this DDQN framework alters the target equation
eq. (2) to eq. (4), with the Polyak update process of Q¢ grger described
by eq. (5) using f as a parameter to control the information transfer
rate.

Target = Res1 + YQlocal (St+1, ar8max Qrarger (St41,a")) (4
a/

emrget — BOrocar + (1 - ﬁ)gtarget (5)

To train the Qj,.4; network, trajectories comprising of an in-
termediate graph state, the chosen action, and associated reward,
are generated, stored and sampled uniformly from a FIFO replay
buffer. This allows for multiple training passes of generated data
and boosts the convergence rate [11].

3.2.2 Model Architecture. At a high level, our GCDQ generator
functions as follows: an intermediate, and initally empty, Hybrid
Attack Graph (HAG) is associated with a set of potential tech-
niques represented as an unconnected graph. Techniques within
this extended graph are one-hot encoded, before being embedded
by multiple GraphSAGE layers [7]. Next, we concatenate pairs
of embeddings to form a proposed action embedding, denoted as
[Xn,, X NJ.], representing the addition of an edge between nodes N;
and Nj.

Following this embedding step, we filter all invalid actions corre-
sponding to a tactic ID increase of more than three. These filtered
action embeddings are then passed through a Multilayer Perceptron
(MLP), denoted by m, to produce a set of Q-values. We apply a re-
scaling operation to this Q-value distribution via a Boltzmann tem-
perature coefficient 7. The Boltzmann exploration method applied,
described by eq. (8), uses this temperature-adjusted distribution to
stochastically select an action, and adds an exploration factor to our
model’s decision-making process [5]. Based on the selected action,
an edge is then added between the associated nodes to expand the
intermediate graph. This cycle is then repeated until the graph
reaches the desired size. The generator network’s equations are
outlined in egs. (6) and (7), and visually represented in fig. 3. Addi-
tional details related to network configurations and dimensions are
available in appendix A.2.

Al-Enabled Cybersecurity Analytics - KDD 2023, August 2023, Long Beach, CA, USA

Intermediate Proposal
Graph Nodes
Legend
T T3 @ Intermediate Node
| O Proposal Node
T6 @ Neural Network Layer

T l:l Chosen Action

[One-Hot Technique Encoder]
|

GraphSAGE —
GraphSAGE
GraphSAGE Q
Q Values
a a; a

Nodes mj]

1
Embedded J Xn X2 Xr3
I:]:]:D Boltzmann
Temperature
X5

X75

|
A P Action
ay = (Xpq.X19)
T Probabilities
Valid
Actions 2= (eXrg) Ry
|
L | T — T3
|
FNN
Fan @
FNN
FNN Updated
L | Intermediate Graph

Figure 3: GCDQ Graph Generation Step

Qa=[N;.N;] = Q(St, [Ni, Nj]) = m([XN;, Xn; 1) (6)
a; = [Nj, Nj] ~ B(Qa, 1) (7)
B(Qa,1) P <%) i=1,2 N (8)
A T) = ————————, i=12...,
Sy

Equation (8) is the mathematical definition of the Boltzmann
distribution. Here, Q(a;) is the Q-value of action g;, calculated
from eq. (6), and 7 is a temperature parameter that controls the
randomness of the action selection. Higher 7 values result in actions
being chosen from a distribution that is close to uniform, while
lower 7 values produce a more deterministic policy that tends to
choose the action with the highest estimated Q-value, making the
policy more greedy as it exploits the learnt Q-values [5].

Of note, to select the initial node of the intermediate graph, a
zero vector is concatenated to all proposal nodes from the first six
tactics. Node i is also restricted to the intermediate graph, while j
may be from either the intermediate graph or proposal nodes.

3.2.3 Discriminator training. The loss of a trained discriminator
D(s;) is integrated into the reward function, ensuring generated
graphs align with the reference training data. This discriminator
operates within a sequential GAN framework, with the generator
previously defined by egs. (6) and (7). The discriminator consists
of multiple graph convolutional layers for node embeddings [9],
followed by a mean aggregator function, MLP, and a final sigmoid

Al-Enabled Cybersecurity Analytics - KDD 2023, August 2023, Long Beach, CA, USA

function, yielding a probability that a given graph s; originates from
the training dataset. For training, synthetic graphs produced from
the current generator are used alongside an equivalent number
of real graphs from the training set, with the model trained until
validation loss falls below 0.45. During the inital training round,
the discriminator learns to differentiate real HAGs from synthetic
graphs generated via a random policy (represented as temperature
T = c0) as a generator has not been trained yet, with subsequent
rounds using the previously trained generator.

3.24 Reward Function. For each generation step undertaken as
described by fig. 3, an associated reward is calculated in accordance
with eq. (9)

R, = a1D(s¢) +oz2(1 = 1 (a)))
Zn Qan

where, D(s;) is the discriminator loss for a given graph s; and
I (a) € [0,1] denotes the defenders likelihood of identifying newly
added techniques associated with action a. The values of « are used
to balance reward components, and are normalized, such that the
net reward R; € [0, 1]. By optimizing the reward function actions
will be taken to minimize the chance of detection (maximizing
1 — 7 (a)) while maintaining similarity to the available training
data (maximizing D (s;)). This specific generic reward function is
chosen to easily expand to incorporate additional metrics of interest
based on the intermediate graph or chosen action.

4 EXPERIMENTS

To explore the GCDQ models ability to generate HAGs with tar-
geted properties, we create an identification distribution spanning
all techniques to simulate a CEPS with various defense measures.
These values are generated by sampling detection rates from the
uniform distribution [0, 1]. Training is then conducted over two se-
quential rounds of 2000 training epochs, each followed by boosting
of the discriminator. Hyperparameters defined within appendix A
were tested for each round, with the resultant generator reward
convergence for round two displayed within fig. 4. Each trained
generator was swept to determine its sensitivity to the Boltzmann
temperature coefficient 7, as described within appendix B.1. This
was done to ensure that during inference the learnt model was suffi-
ciently exploited, while maintaining diversity within the generated
graphs [5]. A temperature sweep plot for round two of training is
provided within fig. 5, and displays the expected increasing exploita-
tion and decreasing diversity as temperature decreases. Additional
training plots are provided within appendix C.

4.1 Results

To validate the trained generators, synthetic graphs were produced
at temperatures near the diversity inflection point as determined
by the temperature sweep fig. 5. This point was chosen to bal-
ance exploitation of the learned reward function with with graph
diversity [5][15]. Average reward components and validation met-
rics from the mean of pairwise comparison between 176 synthetic
and validation graphs containing six nodes were then computed,
with detection reward calculated as the product of all intermedi-
ate detection rewards and a graphs overall detection rate equal

Donald, Meyur, Purohit

1.0+
0.8 4
-
5 06
=
&
0.4 4
—— Total Reward
024 Detection Reward
' —— Discriminator Reward
T T T T T T y T T
0 250 500 750 1000 1250 1500 1750 2000
Epoch
Figure 4: Round 2 reward convergence
]
—8— Total reward
Total reward std 08
—&— Discriminator reward
—e— Detection reward
—— Diversity
r 0.6
B
@
=
&

= L o4

\N\ B

r 0.0

vd
"

107* 1073 1072 107! 10° 10!
Temperature (1)

Figure 5: Round 2 Boltzmann temperature sweep

to (1 — detection score). To quantify graph similarity we employ
a two-pronged approach, examining node features and assessing
overall graph structure. Node feature comparison are done through
Graph Edit Distance (GED) [13] and Jaccard similarity [3], with
GED measuring the minimum number of operations required to
morph one graph into another, while Jaccard similarity calculates
the overlap of node features. When considering graph structures,
we use the Frobenius norm [6] and the Laplacian Spectral Distance
(LSD) [12]. The Frobenius norm quantifies similarity based on the
norm of the difference in two graphs adjacency matrices, while LSD
measures structural resemblance via eigenvalues of the Laplacian
matrix. By coupling these methods with graph diversity, measuring
the proportion of unique graphs generated, we are able to accu-
rately identify trends in graph similarity. The process of calculating
each metrics is described fully in appendix B. To confirm that the
generator had not simply learned to produce the training graphs,
1000 graphs were produced for each configuration within table 1,
with no graphs matching any within the training set.

Hybrid Attack Graph Generation with Graph Convolutional Deep-Q Learning

Al-Enabled Cybersecurity Analytics - KDD 2023, August 2023, Long Beach, CA, USA

Table 1: Validation results

Rewards Node Features Graph Structure
Round Temperature Diversity Detection Rate Detection Discriminator GED Jaccard Frobenius LSD
0 o0 1.000 0.939 0.061 0.331 5.323 0.0219 1.660 0.777
1 0.025 0.977 0.305 0.695 0.544 5.700 0.0405 2.063 1.226
1 0.010 0.432 0.127 0.873 0.620 5.559 0.0384 1.656 0.736
1 0.005 0.080 0.105 0.895 0.624 5.596 0.0385 1.536 0.587
2 0.025 1.000 0.375 0.625 0.339 5.566 0.0372 1.934 1.061
2 0.010 0.966 0.184 0.816 0.384 4.902 0.0434 2.066 1.187
2 0.005 0.511 0.188 0.812 0.438 4.436 0.0457 2.065 1.168

4.2 Discussion

The GCDQ models ability to learn both the detection and discrim-
inator components of the reward functions is demonstrated by
table 1. It achieves a detection reward of 0.873 and a discrimina-
tor reward of 0.62 for 7 = 0.01 during the first training round,
with a diversity of 0.432. This is a significant improvement from
round zero, with the detection and discriminator reward increasing
by 0.812 and 0.289. With respect to decreasing temperature, node
features metrics for round one remain relatively stable, whereas
the graph structure metrics improve significantly. These results
suggest that the initial discriminator primarily exploits structural
information as opposed to features for classification, and aligns
with the expectations of randomly generated graphs containing
uniformly distributed nodes. As the temperature decreases and
the model further exploits the learned reward function, generated
graphs become more structurally similar to the validation set, as
observed by the decreasing Frobenus norm and LSD values, as this
strategy effectively deceives a structural based graph discriminator
to receive maximum reward.

A shift in trends occurs during the second round of training,
after the discriminator is fine-tuned to distinguish training graphs
from synthetic graphs produced by the newly trained generator. As
shown by fig. 4, detection and discriminator rewards continue to
improve during training, however node feature metrics as opposed
to structural ones now improve as temperature decreases and the
learnt model is exploited. This is evidenced by a decreasing GED
and increasing Jaccard similarity score, while the Frobenius Norm
and LSD remain stable. These trends imply that the fine-tuned dis-
criminator now relies on node features to differentiate synthetic
and training graphs, and is possibly due to the round one genera-
tors bias towards a subset of techniques with low detection rates.
Furthermore, we note the slight decrease in overall detection rate
between round one and two, as the generator incorporates a larger
set of techniques to fool the feature focused discriminator.

5 CONCLUSION AND FUTURE WORK

In this paper, we presented a Graph Convolutional Deep-Q Learning
model capable of generating realistic HAGs while minimizing a
manufactured technique detection rate. By analysing trends in
graph similarity metrics we highlighted the model’s capability to
align synthetic graphs to a reference training dataset, based on
both node features and overall graph structure. This analysis also
unveiled limitations in the current training methodology, largely

tied to the sequential training of the discriminator. This training
scheme led to the generator exploiting different graph features
across training rounds, initially prioritizing graph structure and
then transitioning to node features. To mitigate this, we propose a
continuous training scheme, similar to typical GAN, whereby the
discriminator and generator are trained concurrently. This strategy
is anticipated to smooth the abrupt transition between training
rounds, and produce HAGs with a more balanced alignment to
the training data. We also suggest modifying the discriminator
architecture to explicitly account for both graph structure and node
features.

A limitation of the current approach is that the expressiveness
of the generated HAGs is restricted, due to their alignment with
a restricted training set of historical HAGs. While the generated
HAGs describe a significantly larger attack surface than that of the
training data, there remains a gap between the generated HAGs and
the larger attack surface of all likely HAGs. This gap means that
any additional defence mechanisms incorporated will not be fully
equipped to defend against all conceivable attacks, but only those
that are encapsulated by the generated HAGs. This limitation can
be minimized by broadening the size and diversity of the training
HAG dataset.

Future work will focus on various down-sampling methods for
dense graphs, more sophisticated targeted attributes such as en-
ergy expenditure based on real world data, determining the GCDQ
model’s sensitivity to larger and more diverse graphs, and validat-
ing the post-processing step whereby multiple sparse HAGs are
combined. This comprehensive approach will further improve our
understanding of the GCDQ models capabilities, and create a robust
tool capable of generating diverse HAGs with user defined traits.

ACKNOWLEDGMENTS

The research described in this paper is part of the Resilience Through
Data-Driven, Intelligently Designed Control (RD2C) Initiative at
Pacific Northwest National Laboratory. It was conducted under the
Laboratory Directed Research and Development Program at PNNL,
a multiprogram national laboratory operated by Battelle for the
U.S. Department of Energy.

We also thank the anonymous reviewers for their insightful
feedback which was incorporated into this work.

Al-Enabled Cybersecurity Analytics - KDD 2023, August 2023, Long Beach, CA, USA

REFERENCES

[1] Esben Jannik Bjerrum and Richard Threlfall. [n. d.]. Molecular Generation with
Recurrent Neural Networks (RNNs). https://doi.org/10.48550/arXiv.1705.04612
arXiv:1705.04612 [cs, g-bio]

[2] The MITRE Corporation. [n.d.]. MITRE ATT&CK Framework. https://attack.
mitre.org/ Last accessed February 2023.

[3] Corinna Coupette and Jilles Vreeken. 2021. Graph Similarity Description. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining. ACM. https://doi.org/10.1145/3447548.3467257

[4] Ashutosh Dutta, Sumit Purohit, Arnab Bhattacharya, and Oceane Bel. 2022. Cyber
Attack Sequences Generation for Electric Power Grid. In 2022 10th Workshop on
Modelling and Simulation of Cyber-Physical Energy Systems (MSCPES). IEEE, 1-6.

[5] Mathias Edman and Neil Dhir. 2019. Boltzmann Exploration Expectation-
Maximisation. arXiv:1912.08869 [stat.ML]

[6] Timo Gervens and Martin Grohe. 2022. Graph Similarity Based on Matrix Norms.
arXiv:2207.00090 [cs.DM]

[7] William L. Hamilton, Rex Ying, and Jure Leskovec. 2018. Inductive Representation
Learning on Large Graphs. arXiv:1706.02216 [cs.SI]

[8] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostro-
vski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver.
2017. Rainbow: Combining Improvements in Deep Reinforcement Learning.
arXiv:1710.02298 [cs.Al]

[9] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[10] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L.
Hamilton, David Duvenaud, Raquel Urtasun, and Richard S. Zemel. [n.d.]. Ef-
ficient Graph Generation with Graph Recurrent Attention Networks. https:
//doi.org/10.48550/arXiv.1910.00760 arXiv:1910.00760 [cs, stat]

[11] Timothy P Lillicrap and et al. 2015. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971 (2015).

[12] Chang Liu and Jianping Li. 2021. Distance signless Laplacian spectral radius and
perfect matching in graphs and bipartite graphs. arXiv:2104.01288 [math.CO]

[13] Sushovan Majhi and Carola Wenk. 2022. Distance Measures for Geometric
Graphs. arXiv:2209.12869 [cs.CG]

[14] MITRE Corporation. Accessed: 2023. MITRE ATT&CK Database. https://attack.
mitre.org/matrices/enterprise/.

[15] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An Intro-
duction. MIT Press. http://www.cs.ualberta.ca/~sutton/book/the-book.html

[16] Hado van Hasselt, Arthur Guez, and David Silver. 2015. Deep Reinforcement
Learning with Double Q-learning. arXiv:1509.06461 [cs.LG]

[17] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. 2018.
Graph convolutional policy network for goal-directed molecular graph genera-
tion. Advances in neural information processing systems 31 (2018).

[18] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. 2018.
Graphrnn: Generating realistic graphs with deep auto-regressive models. In
International conference on machine learning. PMLR, 5708-5717.

A ADDITIONAL EXPERIMENTAL DETAILS

A.1 Sparse HAG Extraction

In order a extract a sparse HAG from a dense HAG, we apply a
simple random walk algorithm with back tracking. A random node
is first selected from the lowest tactic ID present in the dense HAG,
Ni. This node is then added to the sparse HAG and becomes the
source node Ns. With probability P we then select a node connected
to N with an increasing tactic ID from the dense HAG and add
it to the sparse HAG, this node N, then becomes the new source
node Ng. Else, with probability 1 — P, we move the source node
to a random node within the existing sparse HAG. This process
continues until a sparse HAG containing 6 unique nodes is produced.
In all experiments, a value of P = 0.25 was used. Example sparse
and dense HAGs are displayed within figs. 1 and 2.

A.2 Generator Model Architecture

The GNN portion of the generator model incorporates three SAGE-
Conv layers, each using a LeakyReLU activation function with
negative slope of 0.1. The input dimensions are 208, 32, 32 respec-
tively, outputting a embedding vector of size 32. The inital input
of 208 corresponds to the node encoding dimension, based on the

Donald, Meyur, Purohit

concatenation of the one hot encoded node techniques (193) and
tactics (14) used to represent a given technique.

The MLP portion of the generator, mapping pairs of embedded
nodes to action Q values, comprises of 5 fully connected layers of
64, 128, 128, 128, 128 units. The LeakyReLU activation function is
again used with negative slope of 0.1. A final fully connected layer
is used produce a singular Q value. All weights are initialized via a
Xavier uniform scheme, with biases initialized to zero.

A.3 Discriminator Model Architecture

The discriminator model uses two GCNLayers and ReLU activa-
tion, with input dimensions 208 and 32, and outputs a embedding
vector of size 32. Global mean pooling across dimension zero pro-
duces a single vector of size 32, which is mapped to a classification
probability via a fully connected layer and sigmoid function. This
classification probability denotes the probability that the graph is
sourced from the real training data. All weights are initialized via a
Xavier uniform scheme, with biases initialized to zero.

A.4 Hyperparameters

A.4.1 Fixed Hyperparameters. In all experiments, the discount fac-
tor was set to y = 0.9, the generator was trained for 2000 epochs,
batch size = 8, graphs were generated up to a maximum of 6 nodes,
polyak averaging coefficient f = 0.01, and the replay buffer size
was set to 2500. Upon initialization, 500 generation steps were
conducted to populate the replay buffer. Following initialization,
5 graphs of maximum size 6 were then repeatedly generated and
stored within the buffer followed by 2 rounds of DQN training via
uniform replay buffer sampling with replacement. The Boltzmann
temperature was decayed during training, from an inital value of
7o = 2 to 77 according to equation eq. (10). Decay point = % was
used to determine the point at which temperature decays to its
minimum value 7¢, corresponding to epoch 1333.
episode

TF) 2000xdecay point

T = max ‘[0)((—

To STf (10)

The discriminator is trained with a constant learning rate of
a = 6e — 4 until a training and validation binary cross entropy loss
of 0.4 and 0.45 are reached respectively (averaged over 10 sequential
epochs). The the Adam optimizer was used for training both the
generator and discriminator. When retraining the discriminator, a
temperature value 7 must be chosen to generate synthetic graphs.
This value was chosen through inspection of the associated Boltz-
mann temperature plots fig. 5, with a temperature value chosen
that corresponded with the inflection point of the model diversity.
For all experiments, a value of 7 = 0.025 was chosen as it balanced
exploitation of the learnt reward function with model diversity.

A.4.2 Searched Hyperparameters. For each round of generator
training, the following hyperparameters were tested via a grid
search. Learning rate = [0.01, 0.003,0.001, 0.0003, 0.0001], mini-
mum Boltzmann temperature T = [0.01,0.005, 0.0025, 0.001], re-
ward identification alpha ay = [1,0.5,0.25]. Models were then eval-
uated based on the validation metrics used within table 1, with the
models corresponding with maximum detection and discriminator
reward displayed within the body of the paper.

https://doi.org/10.48550/arXiv.1705.04612
https://arxiv.org/abs/1705.04612 [cs, q-bio]
https://attack.mitre.org/
https://attack.mitre.org/
https://doi.org/10.1145/3447548.3467257
https://arxiv.org/abs/1912.08869
https://arxiv.org/abs/2207.00090
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1710.02298
https://doi.org/10.48550/arXiv.1910.00760
https://doi.org/10.48550/arXiv.1910.00760
https://arxiv.org/abs/1910.00760 [cs, stat]
https://arxiv.org/abs/2104.01288
https://arxiv.org/abs/2209.12869
https://attack.mitre.org/matrices/enterprise/
https://attack.mitre.org/matrices/enterprise/
http://www.cs.ualberta.ca/~sutton/book/the-book.html
https://arxiv.org/abs/1509.06461

Hybrid Attack Graph Generation with Graph Convolutional Deep-Q Learning

B EVALUATION METRICS
B.1 Boltzmann Temperature Sweep

For a given trained generator model, 1000 graphs containing be-
tween two and six nodes were generated for various temperatures.
The individual reward components were then averaged, and plotted
along with the graph diversity score for their corresponding tem-
perature. Graph diversity was calculated through the proportion of
unique graphs within the set of 1000 generations.

B.2 Graph Edit Distance

Graph Edit Distance (GED) measures dissimilarity between two
graphs by calculating the number of operations required to trans-
form one graph into another. These operations include node and
edge insertions, deletions, or substitutions and is approximated by
the NetworkX library optimize_graph_edit_distance function.

B.3 Jaccard Similarity Score

The Jaccard Similarity score is calculated based on the node fea-
tures, and is done so through dividing the size of the node feature
intersection set by the size of the node feature union set.

B.4 Laplacian Spectral Distance

The Laplacian Spectral Distance (LSD) calculates the eigenvalues of
the Laplacian matrices of the two graphs and then measures the dis-
tance between them. Practically this is done through first computing
the Laplacian of the adjacency matrices via the laplacian_matrix
function from the NetworkX library. The euclidean distance of
each eigenvalue pair from the two graphs is then calculated and
averaged, resulting in an average spectral distance. The intuition
behind this method is that two graphs with similar structures will
also have a similar Laplacian spectra and small spectral distance.

B.5 Frobenius Norm

The Frobenius norm is commonly used to compare two matrices,
and is defined as the square root of the sum of the absolute squares
of its elements. To compare two adjacency matrices, they are first
subtracted to form a difference matrix, with the Frobenius norm
then applied to give a distance metric between the two graphs. Of
note the Frobenius norm is sensitive to arbitrary node ordering
within an adjacency matrix, therefore all possible arrangements are
evaluated to find the minimum configuration. For a graph contain-
ing 6 nodes, this results in 6! = 720 calculations.

C SUPPLEMENTARY RESULTS

Additional training results displaying generator reward and loss
for round one, along with the generator loss for round two are
provided within figs. 6 to 8

Al-Enabled Cybersecurity Analytics - KDD 2023, August 2023, Long Beach, CA, USA

B
g 0.6
&
0.5
0.4
034 —— Total Reward
Detection Reward
0.2 —— Discriminator Reward
0 250 500 750 1000 1250 1500 1750 2000
Epoch
Figure 6: Reward convergence (round 1)
— Net Loss
2
a1
6
w —81
&
]
o _
g -
—12 4
—14 1
-16
-18 1— T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Epoch
Figure 7: DQN Loss (round 1)
— Net Loss
a1
6
_g |
]
S -10 1
o
S

T T T T T T y v T
0 250 500 750 1000 1250 1500 1750 2000
Epoch

Figure 8: DON Loss (round 2)

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Methods
	3.1 Hybrid Attack Graph Dataset
	3.2 Graph Convolutional Deep-Q Learning

	4 Experiments
	4.1 Results
	4.2 Discussion

	5 Conclusion and Future Work
	Acknowledgments
	References
	A ADDITIONAL EXPERIMENTAL DETAILS
	A.1 Sparse HAG Extraction
	A.2 Generator Model Architecture
	A.3 Discriminator Model Architecture
	A.4 Hyperparameters

	B EVALUATION METRICS
	B.1 Boltzmann Temperature Sweep
	B.2 Graph Edit Distance
	B.3 Jaccard Similarity Score
	B.4 Laplacian Spectral Distance
	B.5 Frobenius Norm

	C SUPPLEMENTARY RESULTS

