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Abstract

Targeted phishing emails are a major cyber threat on the
Internet today and are insufficiently addressed by current
defenses. In this paper, we leverage industrial-scale datasets
from Sophos cloud email security service, which defends
tens of millions of customer mailboxes, to propose a novel
Transformer-based architecture for detecting targeted phish-
ing emails. Using real-world targeted phishing data as well
as millions of benign customer emails for training and evalu-
ation, we show that our proposed CatBERT (Context-Aware
Tiny Bert) model achieves a 87% detection rate at a false posi-
tive rate of 1%, as compared to DistilBERT [20], LSTM (Long
Short-Term Memory) [13], and logistic regression baselines
which achieve 83%, 79%, and 54% detection rates respectively.
Our model leverages both natural language and email header
inputs, is more computationally efficient than competing
transformer approaches, and we show that it is less prone
to adversarial attacks which deliberately replace keywords
with typos or synonyms.
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Artificial intelligence.
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1 Introduction

Social engineering attacks leveraging hand-crafted emails
are a major threat vector today. Because these emails are
often hand-written, individually targeted, and incorporate
background research on their targets [6], they pose a signif-
icant challenge for conventional detection systems which
reply on spam-like duplication between previously seen and
new malicious emails.

To address these challenges, in this paper we propose
a phishing detection strategy based on transformers [22],
leveraging a BERT-derived approach that is trained on a self-
supervised cloze task on a public corpus of documents [3]
and then optimizing the language model to perform phish-
ing detection. This transfer-learning procedure allows the
network to learn a useful representation of natural language
syntax and semantics before specialization in phishing de-
tection.

To accurately detect malicious emails, we go beyond sim-
ply fine-tuning a canonical BERT transformer model in two
ways. First, we integrate email header features into the flow
of our network, rather than simply relying on sequential tex-
tual information. Header fields in an email provide contextual
information about the communication between senders and
recipients. Our network architecture combines an email’s
text content with this additional context and improves the
classification performance over standard BERT.

Second, we have found, experimentally, that a co-mingled
fine-tuning and adapter-based approach, in which we freeze
most transformer block parameters and tune fully connected
adapter layers, works best, and also that we can ablate a
number of transformer blocks in the upstream pretrained
model with no loss in accuracy [9]. These modeling choices
yield a smaller and faster model able to handle a high vol-
ume of email at lower computational cost while maintaining
optimal accuracy relative to multiple baselines.

The contributions of our work are listed below.

e We propose a BERT-derived phishing email detection
model which combines text content with header con-
text features, outperforming a range of approaches
from both historical and deep-learning NLP. To our
knowledge, ours is the first published application of
transformers to phishing detection.

e Our co-mingled adapter and fine-tuning approach sub-
stantially reduces the model’s complexity and achieves
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a 15% smaller and 160% faster model at no substantial
loss in accuracy.

e We demonstrate our results on a real-world dataset
of five million emails, including real customer benign
emails and fresh, present-day malicious emails seen
in-the-wild.

e We show under simulation that our model is less prone
to realistic adversarial attacks than a range of base-
lines.

The rest of the paper is organized as follows. Section 2 de-
scribes related work. In section 3, we elaborate our proposed
method and then discuss experiments in section 4. The work
is concluded in section 5.

2 Related work

In this section, we describe machine learning approaches
for detecting phishing emails and then present related work
in making Transformer-based models computationally effi-
cient.

2.1 Machine learning approaches

Traditional approaches to machine-learning based phishing
detection extract TF-IDF (Term Frequency-Inverse Docu-
ment Frequency) features from word tokens in email text
and use them as inputs to logistic regression and tree-based
models [1, 2, 7].

Recent studies leveraged deep neural networks for detect-
ing malicious content across various malicious file types
including portable executable (PE), Zip archive, web and An-
droid files [12, 18, 19, 21]. The malicious files in an email can
be identified by the specific file detectors, but the attachment
files are out of our scope in this paper.

More recent work has employed RNN (Recurrent Neural
Network) and CNN (Convolutional Neural Network) models
on sequential text data to detect malicious emails [13, 14].
In [14], a CNN-based model was introduced with features
only from email headers for detecting spam messages. Our
experiments demonstrate that our combined features both
from the email’s body and header outperform modern neural
network models. To our knowledge, our approach is the first
to leverage transformers in detecting phishing emails.

2.2 Model compression for BERT models

Transformer-based models including BERT [3] and GPT [17]
have achieved great success in text classification tasks, but
the full-sized models are computationally expensive and
memory intensive, making them hard to use in high volume,
low-latency, low-cost inference contexts. Several compressed
BERT models, such as DistilBERT [20] and ALBERT [11] have
been proposed to address this issue [4, 5].

DistilBERT reduces the number of Transformer blocks,
and ALBERT reduces the model size by sharing Transformer
blocks across layers but does not improve inference speed.
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Our approach is to reduce the number of Transformer blocks
and replace removed ones with trainable fully connected
layers (known in the literature as adapters [9]), which we
find leads to more stable and improved results in both run
time and detection performance.

3 Proposed method

In this section, we present our model architecture with input
features and a partial fine-tuning method that improves the
performance of run-time and classification over standard
BERT models.

3.1 Model Architecture
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Figure 1. Our proposed CatBERT model is downsized from
DistilBERT by taking odd-numbered Transformers and re-
placing missing Transformers with simple Adapters, which
we find reduces model size with no cost to accuracy. Our
adapters consists of two dense and a ReLU activation units
with a residual connection. The content input from email
text is fed to the Embedding block and the context input
from email headers is combined in the classification head in
CatBERT. The blocks in blue are not trainable on the phish-
ing detection downstream task, whereas the yellow blocks
are.

=1

Because we target a multilingual phishing detection use
case and seek a low computational cost approach, we se-
lected DistilBERT as our base model, because it has been
pre-trained with multilingual text datasets, and has been
compressed from a standard BERT model. We further com-
press DistilBERT by reducing the number of Transformer
layers and replacing removed ones with simple adapters as
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shown in Figure 1. The adapter blocks are inspired by the
idea from parameter-efficient transfer learning [9] which
adds tiny adapters into Transformer blocks.

While replacing every other transformer block in our pre-
trained model with an adapter block may seem counterintu-
itive, we found that it works well in practice and does not
significantly reduce the efficacy of the final model, while sig-
nificantly reducing computational cost. Figure 1 depicts how
we reduced the number of Transformer blocks. The adapter
block consists of a fully connected dense unit, a Rectified
linear unit (ReLU) and a second dense unit with a residual
connection and the dense units have the same dimensionality
as Transformers.

3.2 Content features

To extract sequential token features from the email subject
and body (which we concatenate), we use BERT tokenizer
which splits input character sequences into a small sub-word
vocabulary of 30,522 tokens for English and 119,547 tokens
for multilingual models [3]. The sub-word tokenizer mini-
mizes out-of-vocabulary issues and inserts two special to-
kens: [CLS] is the first token and [SEP] is the last token for
every text input.

We extract plain text but remove HTML tags from an
email’s subject and body, and then truncate the text from
the end of the concatenated text as the first sentences often
convey more important messages than the last ones. It is
also the case for email replies which append previous email
messages. The hidden state for [CLS] token from the last
Transformer block is fed into the final classification head.

3.3 Context features

Our context-aware approach combines the text content with
context data from email headers as input pairs whereas stan-
dard BERT models accept single text input. We extract the
following context features which are fed into the classifica-
tion head layer in Figure 1.

e Internal communication: this is a binary feature that
codifies whether the sender and recipient of the com-
munication belong to the same email domain.

e External reply: this is a binary feature that codifies
whether the domains of sender and reply-to are differ-
ent.

e Number of recipients and carbon copies: These are
integer features that specify that number of email re-
cipients, and the number of email carbon copies.

3.4 Partial fine-tuning

We conducted an extensive architecture search, and found
that freezing the two bottom Transformer blocks and jointly
fine-tuning all adapters and the top Transformer block in
our architecture maximized generalization performance, as
shown in our Figure 1. Surprisingly, simply removing half of

the Transformer blocks and replacing them with trainable
adapter blocks was sufficient to surpass the high perfor-
mance of the full-sized model.

We fit the network using a binary cross entropy loss func-
tion. The loss L is defined by given the output of our model
f(x;0) for input x and label y € {0, 1} and model parameter
6.

L(x,y;0) = —ylog(f(x;0)) + (1 - y) log(1 - f(x;0))

We solve for 6 the optimal set of parameters that minimize
the loss over the dataset:

6 = arg mein Z L(xi, i3 0)
i=1

Where n is the number of samples in our dataset, and x; and
y; are the feature vector of the i’ training sample and the
label respectively.

4 Experiments

In our experiments, we used a dataset of 407,161 malicious
emails observed in customer environments and threat feeds,
and 3,842,772 benign emails from customer traffic. We split
the samples into 70% for training, 15% for validation and
15% for test datasets based on emails’ first seen times. The
training dataset has 285,021 malicious and 2,697,499 benign
emails, and the test dataset has 122,140 malicious and 1,145,273
benign samples. For all experiments, we set the maximum
BERT token length for email text as 128 which was a sweet
spot between runtime speed and detection performance.
We trained neural network models using the PyTorch [15]
framework with the Adam optimizer [10] and 128 sized mini
batches. Our implementation of DistilBERT is from Hug-
gingface [23]. All neural network models use the same mul-
tilingual BERT tokenizer for text features and same sized
embedding layers, which is designed for each model to have
a similar learning capability to handle the input tokens. The
models are trained with the best hyperparameters for five
epochs, which was enough for the results to converge.

4.1 Classification performance

To baseline our approach, we conducted experiments with
two non-BERT models, Long Short-Term Memory (LSTM) [8]
and Logistic Regression (LR) [16]. We also baselined with
DistilBERT, trained with Adam and with a class-balanced
batch size of 128. CatBERT, our proposed model, has three
Transformer blocks with content and context features. Dis-
tilIBERT contains six Transformer blocks that were used in
the DistilBERT paper [20]. The LSTM model accepts word
sequences as input and contains a single LSTM layer with an
embedding layer that has the same size parameters as BERT.
The LR model uses TF-IDF features from uni/bi-gram words.

Figure 2 compares the models’ ROC (Receiver Operating
Characteristic) curves, demonstrating that BERT-based mod-
els outperform non-BERT models by a large margin and
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that our proposed CatBERT approach achieves the best per-
formance. The top in Figure 2 shows the ROC curves for
all test samples and the bottom is for BEC (Business Email
Compromise) samples. We assigned a high sample weight
for the BEC samples using hyperparameter search, which
allows our model to focus on those targeted social engineer-
ing emails, as high errors will be given when those samples
are miss-classified during training (see Table 1 and Table 2
of the Appendix).

We also conducted an ablation study to investigate the
influence of new components in CatBERT. When one of the
adapter or context layers was removed from CatBERT, there
was a measurable performance drop (see Figure 3 of the
Appendix).

While adversaries often deform malicious emails [1], Fig-
ure 4 of the Appendix shows that our approach for the com-
bined features with partial fine-tuning was less prone to
realistic typo and synonym attacks in the black box setting
where adversaries are allowed to query whether an input
email is detected or not. The Figure suggests that our model
still recognizes the main intent of an email message even
if some of the words are replaced with typographic errors
or synonyms. We created adversarial samples from the BEC
samples in our test dataset using simple synonyms and typos.
Although our adversarial attacks are limited to those simple
types, our experiments demonstrate that CatBERT is more
robust than non-BERT baseline models.

4.2 Runtime performance

One of the challenges in applying full-sized Transformer-
based models to real-time malware detection systems is the
runtime performance. As millions of emails need to be pro-
cessed daily on general-purpose CPU machines in our pro-
duction environment, the inference speed on CPU is a critical
performance metric for model deployment. DistilBERT has
135 million parameters, which is the largest model with 6
Transformer blocks, and a correspondingly long inference
time. CatBERT with 3 Transformer blocks has 117 million pa-
rameters, is about 15% smaller than DistilBERT and obtains
1.6x speed up in CPU inference time (using an AWS mb.large
instance type). The relatively modest reduction in parameter
size for CatBERT is due to the fact that all three models use
a large embedding layer with 92 million parameters, which
accounts for about 70% of all parameters (see Table 3 of the
Appendix).

5 Conclusion

Hand-crafted social engineering emails pose a significant
challenge for traditional signature and ML detection tech-
nologies, as an individually targeted email may not share
word sequences or word choices with previously seen at-
tacks. We introduce an efficiently downsized BERT model
by fine-tuning a pre-trained, highly pruned BERT model
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Figure 2. Mean ROC curves and standard deviation for Cat-
BERT and baseline models. Top plot compares four models
with all test samples and bottom one compares only with
BEC (Business Email Compromise) test samples respectively.
Mean and standard deviation are computed over five runs.

with additional context features from email headers that
can detect targeted phishing emails, even in the presence
of deliberate misspellings and attempted evasions. Our ap-
proach outperforms strong baseline models with adapter
and context layers. CatBERT is 15% smaller and 160% faster
than DistilBERT which is already 40% smaller than standard
BERT.
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Table 1. AUC and TPRs on all test samples for four FPRs. Mean and standard deviation results are aggregated over five runs
and best ones are shown in bold.

AUC FPR
0.0001 0.001 0.01 0.1

CaTBERT 0.9894 + 0.0006 0.3884 + 0.0129 0.6859 + 0.0054 0.8663 + 0.0017 0.9721 + 0.0021
DistilBERT  0.9771 + 0.0026 ~ 0.2696 + 0.0524  0.6245 + 0.0156  0.8251 + 0.0086  0.9436 + 0.0066
LSTM 0.9765 + 0.0011  0.1674 £ 0.0239  0.5360 + 0.0096  0.7852 £+ 0.0048  0.9390 + 0.0033
LR 0.9620 = 0.0016  0.0186 = 0.0125  0.2127 = 0.0406  0.5434 = 0.0165  0.8918 + 0.0045

Table 2. AUC and TPRs on test BEC samples for four FPRs. Mean and standard deviation results are aggregated over five runs
and best ones are shown in bold.

FPR
0.0001 0.001 0.01 0.1

AUC

CaTBERT 0.9977 + 0.0003 0.7658 + 0.0116 0.8752 + 0.0245 0.9590 + 0.0100 0.9949 + 0.0042
DistilBERT  0.9958 + 0.0026 ~ 0.7282 + 0.0272  0.8667 + 0.0128  0.9521 = 0.0139  0.9932 + 0.0034
LSTM 0.9950 = 0.0009  0.5060 = 0.0652  0.7761 = 0.0174  0.9282 + 0.0139  0.9863 + 0.0042
LR 0.9848 + 0.0096  0.2821 + 0.1590  0.7077 £ 0.0598  0.8342 + 0.0207  0.9863 + 0.0116

Table 3. Comparison of model size and inference speed, CatBERT achieved the best AUC and inference speed.

DistilBERT CatBERT

Number of Transformers 6 3
Number of total parameters (millions) 135 (1.2x) 117 (1x)
Number of non-embedding parameters (millions) 43 (1.7x) 25 (1x)
Inference time on CPU (milliseconds) 130 (1.6x) 79 (1x)
AUC 0.9771 0.9894
1.0 1
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<
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g
=
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Figure 3. The ROC curves for CatBERT ablation study. Red, green and blue line shows CatBERT, CatBERT without adapters
and CatBERT without context input respectively. Mean and standard deviation are computed over five runs.
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Figure 4. The mean detection accuracy against adversarial attacks over five runs. Left shows the accuracy against synonym
attacks and right shows the accuracy against typo attacks. The budget is the maximum number of synonym or typo attacks
where the first n budget words are replaced with attack words. CatBERT is more robust than non-BERT baseline models.
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