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ABSTRACT
With the escalating prevalence of Internet of Things (IoTs) in critical
infrastructure, the requirement for efficient and effective anomaly
detection solution becomes increasingly important. Unfortunately,
most prior research works have largely overlooked to adapt detec-
tion criteria for different operational states, thereby rendering them
inadequate when confronted with diverse and complex work states
of IoTs. In this study, we address the challenges of IoT anomaly
detection across various work states by introducing a novel model
called Hybrid State Encoder-Decoder (HSED). HSED employs a
two-step approach, beginning with identification and construction
of a hybrid state for Key Performance Indicator (KPI) sensors based
on their state attributes, followed by the detection of abnormal or
failure events utilizing high-dimensional sensor data. Through the
evaluation on real-world datasets, we demonstrate the superiority
of HSED over state-of-the-art anomaly detection models. HSED
can significantly enhance the efficiency, adaptability and reliability
of IoTs and avoid potential risks of economic losses by IoT failures.
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1 INTRODUCTION
With the growth of cyber technologies and communication net-
works, Internet of Things (IoTs) have witnessed a remarkable surge
in critical infrastructure domains, such as transportation networks,
energy systems, water and gas distribution networks, as well as
unmanned factories. The salient feature of IoTs lies in the ability to
establish a tight connection between computational and physical
components. By seamlessly integrating physical and cyber elements,
IoTs can execute intricate real-time tasks by acquiring data from
sensors, conducting data analysis, and initiating actions based on
the obtained insights. Nevertheless, as the scale and complexity
of IoTs continue to expand at a rapid pace, the consequences of
system failures or security breaches can be severe, even posing
life-threatening risks.

Therefore, it is necessary to develop data-centric anomaly detec-
tion solutions to automatically monitoring the operation of IoTs.
The solution should be able to analyze large volumes of data in real-
time, facilitate early detections of anomalies and prompt remedial
measures. A major challenge to implement such a solution is on
building the system profile for different work states. Most IoTs have
multiple work states (i.e., operational modes). The normal dynamics
exhibited by Key Performance Indicator (KPI) sensors may vary
across different work states. Unfortunately, most existing anomaly
detection methods cannot adapt their models in accordance with
the work state. Consequently, they may report lots of false alerts
when IoTs change the work states in a normal manner, or miss the
real anomalies while testing with a wrong profile model.

Furthermore, the anomaly detection across multiple work states
presents a series of challenges: First, the dynamics of work states
are intricately linked to system operations or transitions. Due to a
lack of domain expertise, most users cannot provide accurate and
detailed information of the work states. Instead, they would like
the monitoring system to learn the work states and provide them
as output. Second, the data acquired from IoT sensors typically
exhibits high dimensionality and is prone to noise. It is difficult to
direct extract meaningful information from such data without a
clear indicator. Last, the system behavior and associated dynam-
ics can vary significantly among different states. Such distances
among normal states may be magnitude larger than the difference
of normal/abnormal behaviors.
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In this study, we address the above challenges of IoT anom-
aly detection and propose a novel framework called Hybrid State
Encoder-Decoder (HSED). The major contributions are listed as
follows:

• HSED employs state encoders model to recover multiple
hidden states for the IoT. The system extracts embedding
features from individual state and constructs a hybrid model
to address dynamic work states.
• HSED reconstructs the sensor signals based on the hybrid
hidden state of IoT. The system then conducts anomaly de-
tection by comparing the reconstructed signals with original
ones.
• HSED is deployed and evaluated on real world dataset. HSED
achieves higher accuracy in anomaly detection tasks com-
paring to other state-of-the-art methods.

2 RELATEDWORK
In recent years, there has been a notable surge of interest on apply-
ing deep learning-based approaches for anomaly detection in IoT
data [8]. Most methods focus on anomaly detection by reconstruct-
ing the sensor data with deep models. Recurrent Neural Networks
(RNNs) have gained widespread adoption for capturing temporal
dependencies in IoTs [4, 13], and auto-encoders are commonly em-
ployed to model correlations among diverse sensors [1, 2].

Recurrent Variational Auto-Encoder (VAE) architectures have
been used to construct non-linear state space models [6] and facili-
tate the learning of disentangled representations [3]. RNN-based
deep state space models have been proposed Rangapuram et al.
[10], Salinas et al. [11] to accomplish probabilistic sensor data fore-
casting. However, the majority of these approaches are limited to
constructing a single model and are not well-suited for addressing
the diverse work states in IoT applications. Moreover, these meth-
ods require the users to input prior domain-specific knowledge.
Their applicability is also restricted and confined to some specific
domains, such as power management.

One of the seminal works in contextual anomaly detection is
Conditional Anomaly Detection (CAD) [12]. This method requires
users to partition features into contextual and behavioral categories.
The method uses Gaussian Mixture Models (GMM) to fit the distri-
butions of the contextual and behavioral feature spaces and learns
dependencies between them. Another method, the Robust Contex-
tual Outlier Detection (ROCOD) method [7], uses both local and
global models to describe the relationships between contextual and
behavioral features. The main problem of above methods is on the
assumption. They rely on the assumption that features adhere to
specific statistical distributions, such as GMM. However, this as-
sumption may prove to be too restrictive in real-world scenarios.
It can potentially hinder the accuracy of the results obtained from
these methods.

3 PROBLEM DEFINITION
Let X = {X1, ...,X𝑛} be the historical data-set, which consists of
𝑛 different sensor data. Each sensor data X𝑡 ∈ R𝑑×𝑇 is a multi-
variate time series with length 𝑇 and for each time step 1 ≤ 𝑡 ≤ 𝑇 ,
X𝑖,𝑡 = [C𝑖,𝑡 , 𝑺𝑖,𝑡 ] ∈ R𝑑1+𝑑2 is the correspondingmulti-variate vector

Algorithm 1 HSED
Require: Number of different states𝑚
1: Extracting the feature embedding by

Enc(·), {Center𝑗 }𝑚𝑗=1 ← Cond-Embedding(C)
2: Set the similarity matrix by

𝑆 (C𝑖 ,Center𝑗 ) = ∥Enc(C𝑖 ) − Center𝑗 ∥2
3: Set the hybrid hidden-states as

P𝑖, 𝑗 ∼
(
1 + 𝑆 (C𝑖 ,Center𝑗 )/𝛼

)−(1+𝛼)/2
4: for each main state C𝑗 and KPI attributes 𝑺𝑖 do
5: Extracting the embedding for KPI attributes 𝑺𝑖 within state

C𝑗

Embedding𝑗 (·) ← Sensor-Embedding(𝑺𝑖 , P𝑖, 𝑗 )
6: end for
7: For each sequence 𝑺𝑖 , combining the embedding and recovering

the original sequence
𝑺 ′
𝑖
, 𝑺 ′

𝑖,𝑏
← Rec

(
{Embedding𝑗 (𝑺𝑖 ), P𝑖, 𝑗 }𝑚𝑗=1

)
with dimension 𝑑 = 𝑑1 + 𝑑2. Here, 𝑺𝑖,𝑡 ∈ R𝑑2 is the data collected
from KPI sensors.

Note that, the value of KPI sensors can vary significantly across
different work states. To incorporate these information, we intro-
duce contextual variables C𝑖,𝑡 ∈ R𝑑1 to denote the state attributes,
which indicates the dynamic of the work state.

In general, anomaly detection can be divided into two categories:
point anomalies and contextual anomalies. Point anomalies refer
to data points that deviate significantly from the expected behav-
ior observed throughout the entire trajectory. On the other hand,
contextual anomalies pertain to data points that exhibit significant
deviations from the expected behavior within a particular context
or environment. The identification of contextual anomalies neces-
sitates considering the specific environment or context in which
the data point is observed. Contextual anomalies are more difficult
to detect than point anomalies, and we focus on the detection of
contextual anomalies in this study.
Problem Definition (Anomaly Detection): Let {𝑺1, ..., 𝑺𝑛} be the
historical dataset of normal operation, and {C1, ...,C𝑛} be the state
information, the task is to learn a modelM, such that when new
streaming data X comes in, the modelM can detect whether X is
abnormal or not.

4 THE HSED FRAMEWORK
In this section, we propose a noval framework called Hybrid State
Encoder-Decoder (HSED) to detect the anomalies in sensor data of
IoTs. The overall system structure is shown in Figure 1. And the
main steps are illustrated in Algorithm 1.

4.1 Distinguish Hidden States
Since the dynamic of KPI sensor 𝑺 highly relied on the hidden state,
it becomes imperative to first uncover the hidden state before pro-
ceeding with anomaly detection. Hence, in HSED algorithm (Line
1), we employ an auto-encoder-based deep temporal clustering
mechanism Cond-Embedding [5] to distinguish the hidden state
from the state attributes C = {C1, ..,C𝑛}, where each clustering
Center𝑗 corresponding to a different state. The whole process is
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Figure 1: The overall framework for the HSED and details for each steps can be found in Section 4.1 to 4.5.

shown as Algorithm 2: Given the input sequence C𝑖 ∈ R𝑑1×𝑇 , we
use sequential GRU-cells as encoder to extract the time-series infor-
mation from both the forward sequence C𝑖 and the corresponding
inverse sequence C𝑖,𝑏 . After receiving the feature embedding matri-
ces H𝑓 ,H𝑏 ∈ R𝑇×𝑙 , we introduce the attention mechanism (Lines 4
to 6) to aggregate the feature across different timestamps. Based on
the final embedding feature Enc(C𝑖 ), we reconstruct the original
sequence with a GRU-based decoder (Line 7) and also perform K-
Means algorithm with the embedding feature to generate different
clusters (Line 8). Based on the reconstruction error and clustering
error, the training loss of algorithm 2 consists of the following three
parts:

Loss = 𝛼 ·
𝑛∑︁
𝑖=1
∥C𝑖 − C′𝑖 ∥

2
2︸            ︷︷            ︸

Auto-encoder forward loss

+𝛼 ·
𝑛∑︁
𝑖=1
∥C𝑖,𝑏 − C′𝑖,𝑏 ∥

2
2︸                 ︷︷                 ︸

Auto-encoder backward loss

+ 𝛽 ·
𝑛∑︁
𝑖=1
∥Enc(C𝑖 ) − Center(Enc(C𝑖 ))∥22︸                                         ︷︷                                         ︸

K-mean loss

,

where Center(Enc(C𝑖 ) correspond to the closest center for the
feature embedding Enc(C𝑖 ). In Algorithm 2, we aim to minimize
the training loss and update the parameters 𝜽𝑓 , 𝜽𝑏 with gradient
descent.

4.2 Hybrid State Construction
Now HSED has distinguished the hidden states Center𝑗 . However,
time series X𝑖 may not fall into each state, the smoothly dynamic
of the hidden state and the existence of some intermediate state
makes it more difficulty to detect the abnormal events. To capture
the smoothly switching of hidden states and corresponding interme-
diate states, we develop a similarity-based mechanism to discover
the hybrid states and decomposes each time series X𝑖 to the hybrid
of multiple basic hidden states. More specifically, for each time
series X𝑖 , we focus on the state attributes C𝑖 and first extract the
feature embedding Enc(C𝑖 ) from Algorithm 2. Then each state at-
tributes C𝑖 and the hidden state Center𝑗 , we compute the similarity,

Algorithm 2 Cond-Embedding
Require: Number of different states 𝑚, Forward and backward

parameters 𝜽𝑓 , 𝜽𝑏
1: Input: state attributes C𝑖 ∈ R𝑑1×𝑇 = [x1, .., x𝑇 ]
2: Create the inverse sequence C𝑖,𝑏 = [x𝑇 , .., x1]
3: Let H𝑓 ← GRU𝜽𝑓 (C𝑖 ) = [h1, .., h𝑇 ], H𝑏 ← GRU𝜽𝑏 (C𝑖,𝑏 ) =
[h1,𝑏 , .., h𝑇,𝑏 ]

4: u𝑓 = tanh(𝐻𝑓 ·W𝑓 + 𝒃𝑓 ), u𝑏 = tanh(𝐻𝑏 ·W𝑏 + 𝒃𝑏 )
5: w𝑓 ,𝑡 = Soft-Max(u𝑓 ◦ h𝑡 ), w𝑏,𝑡 = Soft-Max(u𝑏 ◦ h𝑡,𝑏 )
6: hattention

𝑓
=
∑𝑇
𝑡=1w𝑓 ,𝑡h𝑡 , hattention𝑏

=
∑𝑇
𝑡=1w𝑏,𝑡h𝑡,𝑏

7: Set embedding feature Enc(C𝑖 ) = hattention
𝑓

+ hattention
𝑏

8: Reconstruct the sequences C′
𝑖
← GRU𝜽𝑓 (Enc(C𝑖 )), C′𝑖,𝑏 ←

GRU𝜽𝑏 (Enc(C𝑖 ))
9: Perform K-mean algorithm for the embedding feature Enc(C𝑖 )

and return the centers: {Center𝑗 }𝑚𝑗=1

which is denote by the euclidean distance between Enc(C𝑖 ) and
Center𝑗 : 𝑆 (C𝑖 ,Center𝑗 ) = ∥Enc(C𝑖 ) − Center𝑗 ∥2 (Line 2). At last,
we construct the hybrid state with the Student’s t distribution and
generate the weight matrix P𝑖, 𝑗 ∼

(
1 + 𝑆 (C𝑖 ,Center𝑗 )/𝛼

)−(1+𝛼)/2
(Line 3), where𝑤𝑖, 𝑗 represents the probability to assign state series
C𝑖 to main state Center𝑗 . With the help of this weighted matrix
P, the hidden state for series Xi can be decomposed as a hybrid of
main states.

4.3 Extract Embedding Features
After constructing the hybrid states, HSED employs a LSTM-based
encoder to extract the features from the KPI sensors 𝑺𝑖 . Since the
sensor data of different states can be totally different, HSED needs to
collect the features of various information such as period or magni-
tude across multiple states. Therefore, HSED constructs individual
encoders and decoders for each main state Center𝑗 separately and
the detailed algorithm is shown in Algorithm 3. Specifically, the
encoder consists two different LSTM-based units to process the
KPI sensor data: the first one is used to aggregate the time-series
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Algorithm 3 Sensor-Embedding
Require: Number of different states 𝑚, Forward and backward

parameters 𝜽𝑓 , 𝑗 , 𝜽𝑏,𝑗
1: Input: KPI attributes 𝑺𝑖 ∈ R𝑑2×𝑇 = [y1, .., y𝑇 ], Hybrid-state

matrix P𝑖, 𝑗
2: Create the inverse sequence 𝑺𝑖,𝑏 = [y𝑇 , .., y1]
3: Let h𝑓 ← LSTM𝜽𝑓 ,𝑗 (𝑺𝑖 ), h𝑏 ← LSTM𝜽𝑏,𝑗 (𝑺𝑖,𝑏 )
4: Set embedding feature Embedding𝑗 (𝑺𝑖 ) =

Concatenate(h𝑓 , h𝑏 )
5: Reconstruct the sequences 𝑺 ′

𝑖
← LSTM𝜽𝑓 ,𝑗 (Embedding𝑗 (𝑺𝑖 )),

𝑺 ′
𝑖,𝑏
← LSTM𝜽𝑏,𝑗 (Embedding𝑗 (𝑺))

Algorithm 4 Rec
Require: Number of different states 𝑚, Forward and backward

parameters 𝜽𝑓 , 𝜽𝑏
1: Input: Embedding feature {Embedding𝑗 (𝑺𝑖 )}𝑚𝑗=1, Hybrid-state

matrix P𝑖, 𝑗
2: Set embedding feature Embedding(𝑺𝑖 ) = Concatenate(P𝑖, 𝑗 ·

Embedding𝑗 (𝑺𝑖 ))
3: Reconstruct the sequences::

𝑺 ′
𝑖
← LSTM𝜽𝑓 (Embedding(𝑺𝑖 )),

𝑺 ′
𝑖,𝑏
← LSTM𝜽𝑏 (Embedding(𝑺))

information from the forward sequence and the other focused on
the backward sequence (Line 3). After concatenating the output
of two different units h𝑓 , h𝑏 (Line 4), HSED obtains the encoding
feature Embedding𝑗 (𝑺𝑖 ) and feed it into the decoder to reconstruct
the original sequence (Line 5). Finally, since each time series 𝑺𝑖 is
not purely belong to one main state Center𝑗 , the reconstruction er-
ror for each main state Center𝑗 is also weighted by the hybrid-state
matrix P𝑖, 𝑗 as following:

Loss𝑗 =
𝑛∑︁
𝑖=1

P𝑖, 𝑗 ∥𝑺𝑖 − 𝑺 ′𝑖 ∥
2
2︸                ︷︷                ︸

Hybrid Auto-encoder forward loss

+
𝑛∑︁
𝑖=1

P𝑖, 𝑗 ∥𝑺𝑖, 𝑏 − 𝑺 ′𝑖,𝑏 ∥
2
2︸                     ︷︷                     ︸

Hybrid Auto-encoder backward loss

,

(4.1)

and HSED uses gradient descent method to update the parameters
𝜽𝑓 , 𝑗 , 𝜽𝑏,𝑗 for main state Center𝑗 and minimize the loss for each
state.

4.4 Reconstruction with Hybrid State
So far, HSED retrieves the encoding features Embedding𝑗 (𝑺𝑖 ) for
each main state and KPI sensor 𝑺𝑖 . For each KPI sensor 𝑺𝑖 , we con-
catenate the feature Embedding𝑗 (𝑺𝑖 ) with the hybrid-state matrix
and feed it in to a LSTM-based decoder to reconstruct the original
sequence (See Algorithm 4). In this step, we update the parameter
with gradient descent to minimize the following reconstruction
loss:

Loss =
𝑛∑︁
𝑖=1

P𝑖, 𝑗 ∥𝑺𝑖 − 𝑺 ′𝑖 ∥
2
2︸                ︷︷                ︸

Forward Reconstruction Error

+
𝑛∑︁
𝑖=1

P𝑖, 𝑗 ∥𝑺𝑖,𝑏 − 𝑺 ′𝑖,𝑏 ∥
2
2︸                    ︷︷                    ︸

Backward Reconstruction Error

.

4.5 Anomaly Detection
After training the model by four steps, HSED combines the state-
aware models and detects the anomalies for online sequence X =

[C, 𝑺]. Similar to the training process, the anomaly detection also
consists of four steps. In the first step, HSED implies the deep
temporal clustering method (Algorithm 2) with the state series C
and generate the state-embedding vector Enc(C). Next, HSED uses
the similarity matrix to compute the euclidean distance between
Enc(C) and eachmain stateCenter𝑗 , and discover the hybrid hidden
states with Student’s t distribution (Line 3 in Algorithm 1). In the
third step, HSED encodes the KPI sensor 𝑺 for each main state (Al-
gorithm 2) and generates embedding features {Embedding𝑗 (𝑺)}𝑚𝑗=1.
Finally, HSED reconstructs the original KPI sensor data 𝑺 ′ and 𝑺 ′

𝑏
with hybrid hidden models (Algorithm 4). Based on the reconstruc-
tion error between the original series 𝑺 and reconstructed data
𝑺 ′, 𝑺 ′

𝑏
, HSED computes the reconstruction error as the anomaly

score and report an alert if the anomaly score is higher than a
threshold. In addition, HSED can also compute a confidence score
based on the distribution of the hybrid hidden states.

5 PERFOMANCE EVALUATION
5.1 Experiment Setting
Engine dataset: This dataset contains 17 sensors collected from an
IoT on vehicle engine and includes over 10000 timestamps. There
are multiple work states of the eninge, and we focus on detect the
following anomalies related to engine failure:
• High temperature: the engine temperature is too high.
• Misfiring: One or more engine cylinders are misfiring.
• Acceleration problem: Engine load has fluctuations or irreg-
ularities.

Compared method: We compare the HSED with the EncDec-
AD method [9], which directly reconstruct the original time-series
behavior with LSTM-Based auto-encoder.

For the engine dataset, we first use max-min operation to nor-
malize each data and then divide the data-set to sliced window with
length 150. After using the HSED algorithm, the average sqaure-
reconstructed error is 0.1348. In comparison, the reconstructed error
of EncDec-AD is 0.1532, which has a worse performance than our
novel method.

6 CONCLUSION
In this work, we proposed a new algorithm, called HSED, for IoT
anomaly detection across various work state. HSED first introduce
a state encoders to discover the hybrid model for the dynamic work
state and later, employs a LSTM-based auto-encoder for reconstruct-
ing the original sensor signal. The evaluation on real-world datasets
also suggests the superiority of HSED over state-of-the-art anomaly
detection models.
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